Lysine acetylation targets protein complexes and co-regulates major cellular functions

Research output: Contribution to journalJournal articleResearchpeer-review

Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600 lysine acetylation sites on 1750 proteins and quantified acetylation changes in response to the deacetylase inhibitors suberoylanilide hydroxamic acid and MS-275. Lysine acetylation preferentially targets large macromolecular complexes involved in diverse cellular processes, such as chromatin remodeling, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other major posttranslational modifications.
Original languageEnglish
Issue number5942
Pages (from-to)834-40
Number of pages6
Publication statusPublished - 2009

Bibliographical note

Keywords: Acetylation; Amino Acid Motifs; Benzamides; Cell Line, Tumor; Cell Nucleus; Cell Physiological Phenomena; Cytoplasm; Enzyme Inhibitors; Histone Deacetylases; Humans; Hydroxamic Acids; Lysine; Mass Spectrometry; Metabolic Networks and Pathways; Mitochondria; Multiprotein Complexes; Protein Processing, Post-Translational; Protein Structure, Tertiary; Proteins; Proteome; Proteomics; Pyridines; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins

ID: 14701277