Redox-sensitive alteration of replisome architecture safeguards genome integrity
Research output: Contribution to journal › Journal article › Research › peer-review
Documents
- Somayjit et al., Science 2017_AAM
Accepted author manuscript, 52.2 MB, PDF document
DNA replication requires coordination between replication fork progression and deoxynucleotide triphosphate (dNTP)-generating metabolic pathways. We find that perturbation of ribonucleotide reductase (RNR) in humans elevates reactive oxygen species (ROS) that are detected by peroxiredoxin 2 (PRDX2). In the oligomeric state, PRDX2 forms a replisome-associated ROS sensor, which binds the fork accelerator TIMELESS when exposed to low levels of ROS. Elevated ROS levels generated by RNR attenuation disrupt oligomerized PRDX2 to smaller subunits, whose dissociation from chromatin enforces the displacement of TIMELESS from the replisome. This process instantly slows replication fork progression, which mitigates pathological consequences of replication stress. Thus, redox signaling couples fluctuations of dNTP biogenesis with replisome activity to reduce stress during genome duplication. We propose that cancer cells exploit this pathway to increase their adaptability to adverse metabolic conditions.
Original language | English |
---|---|
Journal | Science |
Volume | 358 |
Issue number | 6364 |
Pages (from-to) | 797-802 |
Number of pages | 6 |
ISSN | 0036-8075 |
DOIs | |
Publication status | Published - 10 Nov 2017 |
Number of downloads are based on statistics from Google Scholar and www.ku.dk
ID: 186152687