Oxygen restriction generates difficult-to-culture p. Aeruginosa

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

Induction of a non-culturable state has been demonstrated for many bacteria, e.g., Escherichia coli and various Vibrio spp. In a clinical perspective, the lack of growth due to these non-culturable bacteria can have major consequences for the treatment of patients. Here, we show how anoxic conditioning (restriction of molecular oxygen, O2 ) generates difficult-to-culture (DTC) bacteria during biofilm growth. A significant subpopulation of Pseudomonas aeruginosa entered a DTC state after anoxic conditioning, ranging from 5 to 90% of the total culturable population, in both planktonic and biofilm models. Anoxic conditioning also generated DTC subpopulations of Staphylococcus aureus and Staphylococcus epidermidis (89 and 42% of the total culturable population, respectively). Growth of the DTC populations were achieved by substituting O2 with 10 mM NO3 as an alternative electron acceptor for anaerobic respiration or, in the case of P. aeruginosa, by adding sodium pyruvate or catalase as scavengers against reactive oxygen species (ROS) during aerobic respiration. An increase in normoxic plating due to addition of catalase suggests the molecule hydrogen peroxide as a possible mechanism for induction of DTC P. aeruginosa. Anoxic conditioning also generated a true viable but non-culturable (VBNC) population of P. aeruginosa that was not resurrected by substituting O2 with NO3 during anaerobic respiration. These results demonstrate that habituation to an anoxic micro-environment could complicate diagnostic culturing of bacteria, especially in the case of chronic infections where oxygen is restricted due to the host immune response.

Original languageEnglish
Article number1992
JournalFrontiers in Microbiology
Volume10
Issue numberAUG
Number of pages15
ISSN1664-302X
DOIs
Publication statusPublished - 2019

    Research areas

  • Aeruginosa, Anoxia, Aureus, Biofilm, Difficult-to-culture, Epidermidis, P, Reactive oxygen species, S, Viable but non-culturable

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 227473942