Climatic controls of decomposition drive the global biogeography of forest-tree symbioses

Research output: Contribution to journalJournal articleResearchpeer-review

  • B. S. Steidinger
  • T. W. Crowther
  • J. Liang
  • M. E. Van Nuland
  • G. D. A. Werner
  • P. B. Reich
  • G. Nabuurs
  • S. de-Miguel
  • M. Zhou
  • N. Picard
  • B. Herault
  • X. Zhao
  • C. Zhang
  • D. Routh
  • K. G. Peay
  • Meinrad Abegg
  • C. Yves Adou Yao
  • Giorgio Alberti
  • Angelica Almeyda Zambrano
  • Esteban Alvarez-Davila
  • Patricia Alvarez-Loayza
  • Luciana F. Alves
  • Christian Ammer
  • Clara Anton-Fernandez
  • Alejandro Araujo-Murakami
  • Luzmila Arroyo
  • Valerio Avitabile
  • Gerardo Aymard
  • Timothy Baker
  • Radomir Balazy
  • Olaf Banki
  • Jorcely Barroso
  • Meredith Bastian
  • Jean-Francois Bastin
  • Luca Birigazzi
  • Philippe Birnbaum
  • Robert Bitariho
  • Pascal Boeckx
  • Frans Bongers
  • Olivier Bouriaud
  • Pedro H. S. Brancalion
  • Susanne Brandl
  • Francis Q. Brearley
  • Roel Brienen
  • Eben Broadbent
  • Helge Bruelheide
  • Filippo Bussotti
  • Roberto Cazzolla Gatti
  • Ricardo Cesar
  • Goran Cesljar
  • Robin Chazdon
  • Han Y. H. Chen
  • Chelsea Chisholm
  • Emil Cienciala
  • Connie J. Clark
  • David Clark
  • Gabriel Colletta
  • Richard Condit
  • David Coomes
  • Fernando Cornejo Valverde
  • Jose J. Corral-Rivas
  • Philip Crim
  • Jonathan Cumming
  • Selvadurai Dayanandan
  • Andre L. de Gasper
  • Mathieu Decuyper
  • Geraldine Derroire
  • Ben DeVries
  • Ilija Djordjevic
  • Amaral Ieda
  • Aurelie Dourdain
  • Nestor Laurier Engone Obiang
  • Brian Enquist
  • Teresa Eyre
  • Adande Belarmain Fandohan
  • Tom M. Fayle
  • Ted R. Feldpausch
  • Leena Finer
  • Markus Fischer
  • Christine Fletcher
  • Jonas Fridman
  • Lorenzo Frizzera
  • Javier G. P. Gamarra
  • Damiano Gianelle
  • Henry B. Glick
  • David Harris
  • Andrew Hector
  • Andreas Hemp
  • Geerten Hengeveld
  • John Herbohn
  • Martin Herold
  • Annika Hillers
  • Euridice N. Honorio Coronado
  • Markus Huber
  • Cang Hui
  • Hyunkook Cho
  • Thomas Ibanez
  • Ilbin Jung
  • Nobuo Imai
  • Andrzej M. Jagodzinski
  • Bogdan Jaroszewicz
  • Carlos A. Joly
  • Tommaso Jucker
  • Viktor Karminov
  • Kuswata Kartawinata
  • Elizabeth Kearsley
  • David Kenfack
  • Deborah Kennard
  • Gunnar Keppel
  • Mohammed Latif Khan
  • Timothy Killeen
  • Hyun Seok Kim
  • Kanehiro Kitayama
  • Michael Kohl
  • Henn Korjus
  • Florian Kraxner
  • Diana Laarmann
  • Mait Lang
  • Simon Lewis
  • Huicui Lu
  • Natalia Lukina
  • Brian Maitner
  • Yadvinder Malhi
  • Eric Marcon
  • Beatriz Schwantes Marimon
  • Ben Hur Marimon-Junior
  • Andrew Robert Marshall
  • Emanuel Martin
  • Olga Martynenko
  • Jorge A. Meave
  • Omar Melo-Cruz
  • Casimiro Mendoza
  • Cory Merow
  • Abel Monteagudo Mendoza
  • Vanessa Moreno
  • Sharif A. Mukul
  • Philip Mundhenk
  • Maria G. Nava-Miranda
  • David Neill
  • Victor Neldner
  • Radovan Nevenic
  • Michael Ngugi
  • Pascal Niklaus
  • Jacek Oleksyn
  • Petr Ontikov
  • Edgar Ortiz-Malavasi
  • Yude Pan
  • Alain Paquette
  • Alexander Parada-Gutierrez
  • Elena Parfenova
  • Minjee Park
  • Marc Parren
  • Narayanaswamy Parthasarathy
  • Pablo L. Peri
  • Sebastian Pfautsch
  • Oliver Phillips
  • Maria Teresa Piedade
  • Daniel Piotto
  • Nigel C. A. Pitman
  • Irina Polo
  • Lourens Poorter
  • Axel Dalberg Poulsen
  • John R. Poulsen
  • Hans Pretzsch
  • Freddy Ramirez Arevalo
  • Zorayda Restrepo-Correa
  • Mirco Rodeghiero
  • Samir Rolim
  • Anand Roopsind
  • Francesco Rovero
  • Ervan Rutishauser
  • Purabi Saikia
  • Philippe Saner
  • Peter Schall
  • Mart-Jan Schelhaas
  • Dmitry Schepaschenko
  • Michael Scherer-Lorenzen
  • Bernhard Schmid
  • Jochen Schongart
  • Eric Searle
  • Vladimir Seben
  • Josep M. Serra-Diaz
  • Christian Salas-Eljatib
  • Douglas Sheil
  • Anatoly Shvidenko
  • Javier Silva-Espejo
  • Marcos Silveira
  • James Singh
  • Plinio Sist
  • Ferry Slik
  • Bonaventure Sonke
  • Alexandre F. Souza
  • Krzysztof Sterenczak
  • Jens-Christian Svenning
  • Miroslav Svoboda
  • Natalia Targhetta
  • Nadja Tchebakova
  • Hans ter Steege
  • Raquel Thomas
  • Elena Tikhonova
  • Peter Umunay
  • Vladimir Usoltsev
  • Fernando Valladares
  • Fons van der Plas
  • Tran Van Do
  • Rodolfo Vasquez Martinez
  • Hans Verbeeck
  • Helder Viana
  • Simone Vieira
  • Klaus von Gadow
  • Hua-Feng Wang
  • James Watson
  • Bertil Westerlund
  • Susan Wiser
  • Florian Wittmann
  • Verginia Wortel
  • Roderick Zagt
  • Tomasz Zawila-Niedzwiecki
  • Zhi-Xin Zhu
  • Irie Casimir Zo-Bi
The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.
Original languageEnglish
JournalNature
Volume569
Issue number7756
Pages (from-to)404-408
Number of pages5
ISSN0028-0836
DOIs
Publication statusPublished - 2019

Bibliographical note

Correction :https://www.nature.com/articles/s41586-019-1342-9

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 220826237