Selective Boosting of CCR7-Acting Chemokines; Short Peptides Boost Chemokines with Short Basic Tails, Longer Peptides Boost Chemokines with Long Basic Tails

Research output: Contribution to journalJournal articleResearchpeer-review


  • Fulltext

    Final published version, 4.94 MB, PDF document

The chemokine receptor CCR7 and its ligands CCL19 and CCL21 regulate the lymph node homing of dendritic cells and naïve T-cells and the following induction of a motile DC-T cell priming state. Although CCL19 and CCL21 bind CCR7 with similar affinities, CCL21 is a weak agonist compared to CCL19. Using a chimeric chemokine, CCL19CCL21N-term|C-term, harboring the N-terminus and the C-terminus of CCL21 attached to the core domain of CCL19, we show that these parts of CCL21 act in a synergistic manner to lower ligand potency and determine the way CCL21 engages with CCR7. We have published that a naturally occurring basic C-terminal fragment of CCL21 (C21TP) boosts the signaling of both CCL19 and CCL21. Boosting occurs as a direct consequence of C21TP binding to the CCR7 N-terminus, which seems to free chemokines with basic C-termini from an unfavorable interaction with negatively charged posttranslational modifications in CCR7. Here, we confirm this using a CCL19-variant lacking the basic C-terminus. This variant displays a 22-fold higher potency at CCR7 compared to WT CCL19 and is highly unaffected by the presence of C21TP. WT CCL19 has a short basic C-terminus, CCL21 a longer one. Here, we propose a way to differentially boost CCL19 and CCL21 activity as short and long versions of C21TP boost CCL19 activity, whereas only a long C21TP version can boost chemokines with a full-length CCL21 C-terminus.

Original languageEnglish
Article number1397
JournalInternational Journal of Molecular Sciences
Issue number3
Number of pages20
Publication statusPublished - 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

    Research areas

  • Basic peptide, Biased signaling, CCL19, CCL21, CCR7

Number of downloads are based on statistics from Google Scholar and

No data available

ID: 291364412