VeTra: a tool for trajectory inference based on RNA velocity

Research output: Contribution to journalJournal articleResearchpeer-review


  • VeTra

    Final published version, 393 KB, PDF document

MOTIVATION: Trajectory inference (TI) for single cell RNA sequencing (scRNAseq) data is a powerful approach to interpret dynamic cellular processes such as cell cycle and development. Still, however, accurate inference of trajectory is challenging. Recent development of RNA velocity provides an approach to visualize cell state transition without relying on prior knowledge.

RESULTS: To perform TI and group cells based on RNA velocity we developed VeTra. By applying cosine similarity and merging weakly connected components, VeTra identifies cell groups from the direction of cell transition. Besides, VeTra suggests key regulators from the inferred trajectory. VeTra is a useful tool for TI and subsequent analysis.

AVAILABILITY: The Vetra is available at

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Original languageEnglish
Article numberbtab364
Issue number20
Pages (from-to)3509-3513
Publication statusPublished - 2021

Bibliographical note

© The Author(s) 2021. Published by Oxford University Press.

Number of downloads are based on statistics from Google Scholar and

No data available

ID: 274273772