Use of CRISPR/Cas9-edited HEK293 cells reveals that both conventional and novel protein kinase C isozymes are involved in mGlu5a receptor internalization

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 2.58 MB, PDF document

The internalization of G protein–coupled receptors (GPCRs) can be regulated by PKC. However, most tools available to study the contribution of PKC isozymes have considerable limitations, including a lack of selectivity. In this study, we generated and characterized human embryonic kidney 293A (HEK293A) cell lines devoid of conventional or novel PKC isozymes (ΔcPKC and ΔnPKC) and employ these to investigate the contribution of PKC isozymes in the internalization of the metabotropic glutamate receptor 5 (mGlu5). Direct activation of PKC and mutation of rat mGlu5a Ser901, a PKC-dependent phosphorylation site in the receptor C-tail, both showed that PKC isozymes facilitate approximately 40% of the receptor internalization. Nonetheless, we determined that mGlu5a internalization was not altered upon the loss of cPKCs or nPKCs. This indicates that isozymes from both classes are involved, compensate for the absence of the other class, and thus fulfill dispensable functions. Additionally, using the Gαq/11 inhibitor YM-254890, GPCR kinase 2 and 3 (GRK2 and GRK3) KO cells, and a receptor containing a mutated putative adaptor protein complex 2 (AP-2) interaction motif, we demonstrate that internalization of rat mGlu5a is mediated by Gαq/11 proteins (77% of the response), GRK2 (27%), and AP-2 (29%), but not GRK3. Our PKC KO cell lines expand the repertoire of KO HEK293A cell lines available to research GPCR pharmacology. Moreover, since pharmacological tools to study PKC isozymes generally lack specificity and/or potency, we present the PKC KO cell lines as more specific research tools to investigate PKC-mediated aspects of cell biology.

Original languageEnglish
Article number102466
JournalJournal of Biological Chemistry
Volume298
Issue number10
Number of pages16
ISSN0021-9258
DOIs
Publication statusPublished - 2022

Bibliographical note

Funding Information:
We thank Dr Jesper M. Mathiesen and Jens Peter Stenvang for their help with cell sorting at Zealand Pharma and Dr Eric Paul Bennett for his advice on gene-editing and IDAA. Dr Asuka Inoue is acknowledged for providing the HEK293A parental cell line and Mie F. Pedersen for generating the GRK2 and GRK3 knockout HEK293A cell lines. We thank Michel Bouvier for sharing the PKC-c1b biosensor. Domain Therapeutics is the exclusive holder of a license for all commercial uses of the PKC-c1b biosensor. J. R. v. S. T. C. M. and H. B.-O. conceptualization; J. R. v. S. and T. C. M. formal analysis; J. R. v. S. T. C. M. E. V. M. and S. D. S. investigation; J. R. v. S. writing–original draft; J. R. v. S. visualization; T. C. M. and H. B.-O. writing–review and editing; T. C. M. and H. B.-O. funding acquisition. H. B.-O. acknowledges financial support from the Independent Research Fund Denmark | Medical Sciences (4183-00131A and 8020-02308) and the Carlsberg Foundation (CF20-0248). T. C. M. and E. V. M. acknowledges funding from the European Union's Horizon2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 797497 and No 846827, respectively.

Funding Information:
H. B.-O. acknowledges financial support from the Independent Research Fund Denmark | Medical Sciences (4183-00131A and 8020-02308) and the Carlsberg Foundation (CF20-0248). T. C. M. and E. V. M. acknowledges funding from the European Union’s Horizon2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 797497 and No 846827, respectively.

    Research areas

  • CRISPR/cas, G protein-coupled receptor, metabotropic glutamate receptor, mGlu5, PKC, receptor endocytosis, receptor internalization, receptor regulation

ID: 322784918