The Environment Shapes the Inner Vestibule of LeuT

Research output: Contribution to journalJournal articleResearchpeer-review


  • Azmat Sohail
  • Kumaresan Jayaraman
  • Santhoshkannan Venkatesan
  • Kamil Gotfryd
  • Markus Daerr
  • Gether, Ulrik
  • Løland, Claus Juul
  • Klaus T Wanner
  • Michael Freissmuth
  • Harald H Sitte
  • Walter Sandtner
  • Thomas Stockner

Human neurotransmitter transporters are found in the nervous system terminating synaptic signals by rapid removal of neurotransmitter molecules from the synaptic cleft. The homologous transporter LeuT, found in Aquifex aeolicus, was crystallized in different conformations. Here, we investigated the inward-open state of LeuT. We compared LeuT in membranes and micelles using molecular dynamics simulations and lanthanide-based resonance energy transfer (LRET). Simulations of micelle-solubilized LeuT revealed a stable and widely open inward-facing conformation. However, this conformation was unstable in a membrane environment. The helix dipole and the charged amino acid of the first transmembrane helix (TM1A) partitioned out of the hydrophobic membrane core. Free energy calculations showed that movement of TM1A by 0.30 nm was driven by a free energy difference of ~15 kJ/mol. Distance measurements by LRET showed TM1A movements, consistent with the simulations, confirming a substantially different inward-open conformation in lipid bilayer from that inferred from the crystal structure.

Original languageEnglish
Article numbere1005197
JournalPLoS Computational Biology
Issue number11
Number of pages24
Publication statusPublished - Nov 2016

Number of downloads are based on statistics from Google Scholar and

No data available

ID: 168931706