Temperate heath plant response to dry conditions depends on growth strategy and less on physiology

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Temperate heath plant response to dry conditions depends on growth strategy and less on physiology. / Albert, Kristian Rost; Nielsen, Jane Kongstad; Schmidt, Inger Kappel; Ro-Poulsen, Helge; Mikkelsen, T.N.; Michelsen, Anders; Linden, L. van der; Beier, Claus.

In: Acta Oecologica, Vol. 45, 2012, p. 79-87.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Albert, KR, Nielsen, JK, Schmidt, IK, Ro-Poulsen, H, Mikkelsen, TN, Michelsen, A, Linden, LVD & Beier, C 2012, 'Temperate heath plant response to dry conditions depends on growth strategy and less on physiology', Acta Oecologica, vol. 45, pp. 79-87. https://doi.org/10.1016/j.actao.2012.09.003

APA

Albert, K. R., Nielsen, J. K., Schmidt, I. K., Ro-Poulsen, H., Mikkelsen, T. N., Michelsen, A., Linden, L. V. D., & Beier, C. (2012). Temperate heath plant response to dry conditions depends on growth strategy and less on physiology. Acta Oecologica, 45, 79-87. https://doi.org/10.1016/j.actao.2012.09.003

Vancouver

Albert KR, Nielsen JK, Schmidt IK, Ro-Poulsen H, Mikkelsen TN, Michelsen A et al. Temperate heath plant response to dry conditions depends on growth strategy and less on physiology. Acta Oecologica. 2012;45:79-87. https://doi.org/10.1016/j.actao.2012.09.003

Author

Albert, Kristian Rost ; Nielsen, Jane Kongstad ; Schmidt, Inger Kappel ; Ro-Poulsen, Helge ; Mikkelsen, T.N. ; Michelsen, Anders ; Linden, L. van der ; Beier, Claus. / Temperate heath plant response to dry conditions depends on growth strategy and less on physiology. In: Acta Oecologica. 2012 ; Vol. 45. pp. 79-87.

Bibtex

@article{fac17c4cb4fd49228e46045b72353675,
title = "Temperate heath plant response to dry conditions depends on growth strategy and less on physiology",
abstract = "The evidence that is currently available demonstrates that future changes in precipitation patterns will affect plant carbon uptake. However, the outcome in terms of success, productivity and fecundity depends upon individual species and different responses of various growth forms. Examination of these differences in response in dry versus rewetting conditions can be used to highlight the limitations coherent in different strategies adopted by, for example, evergreen shrubs and grasses. We investigated the leaf-level photosynthetic performance, leaf C, N and δ13C along with vegetation cover and biomass in the evergreen dwarf shrub Calluna vulgaris and the grass species Deschampsia flexuosa in a temperate heath during seasonal changes in soil moisture.Higher photosynthetic capacity compensated for lower stomatal conductance and sustained higher rates of photosynthesis in the grass compared to the dwarf shrub. In combination with dieback of aboveground biomass and reduction of stomatal conductance reduction during dry conditions, the grass continued to have high carbon uptake in the remaining leaves. The dwarf shrub endured the dry conditions by preserving shoot biomass and reducing stomatal conductance. Soil rewetting increased leaf nitrogen and photosynthesis in the grass much more than for the dwarf shrub.These different strategies may have a considerable impact on carbon uptake and on the ability of a species to compete, as future climatic changes are likely to extend the summer drought period together with the more frequent and extensive precipitation events outside the summer season.",
author = "Albert, {Kristian Rost} and Nielsen, {Jane Kongstad} and Schmidt, {Inger Kappel} and Helge Ro-Poulsen and T.N. Mikkelsen and Anders Michelsen and Linden, {L. van der} and Claus Beier",
year = "2012",
doi = "10.1016/j.actao.2012.09.003",
language = "English",
volume = "45",
pages = "79--87",
journal = "Acta Oecologica",
issn = "1146-609X",
publisher = "Elsevier Masson",

}

RIS

TY - JOUR

T1 - Temperate heath plant response to dry conditions depends on growth strategy and less on physiology

AU - Albert, Kristian Rost

AU - Nielsen, Jane Kongstad

AU - Schmidt, Inger Kappel

AU - Ro-Poulsen, Helge

AU - Mikkelsen, T.N.

AU - Michelsen, Anders

AU - Linden, L. van der

AU - Beier, Claus

PY - 2012

Y1 - 2012

N2 - The evidence that is currently available demonstrates that future changes in precipitation patterns will affect plant carbon uptake. However, the outcome in terms of success, productivity and fecundity depends upon individual species and different responses of various growth forms. Examination of these differences in response in dry versus rewetting conditions can be used to highlight the limitations coherent in different strategies adopted by, for example, evergreen shrubs and grasses. We investigated the leaf-level photosynthetic performance, leaf C, N and δ13C along with vegetation cover and biomass in the evergreen dwarf shrub Calluna vulgaris and the grass species Deschampsia flexuosa in a temperate heath during seasonal changes in soil moisture.Higher photosynthetic capacity compensated for lower stomatal conductance and sustained higher rates of photosynthesis in the grass compared to the dwarf shrub. In combination with dieback of aboveground biomass and reduction of stomatal conductance reduction during dry conditions, the grass continued to have high carbon uptake in the remaining leaves. The dwarf shrub endured the dry conditions by preserving shoot biomass and reducing stomatal conductance. Soil rewetting increased leaf nitrogen and photosynthesis in the grass much more than for the dwarf shrub.These different strategies may have a considerable impact on carbon uptake and on the ability of a species to compete, as future climatic changes are likely to extend the summer drought period together with the more frequent and extensive precipitation events outside the summer season.

AB - The evidence that is currently available demonstrates that future changes in precipitation patterns will affect plant carbon uptake. However, the outcome in terms of success, productivity and fecundity depends upon individual species and different responses of various growth forms. Examination of these differences in response in dry versus rewetting conditions can be used to highlight the limitations coherent in different strategies adopted by, for example, evergreen shrubs and grasses. We investigated the leaf-level photosynthetic performance, leaf C, N and δ13C along with vegetation cover and biomass in the evergreen dwarf shrub Calluna vulgaris and the grass species Deschampsia flexuosa in a temperate heath during seasonal changes in soil moisture.Higher photosynthetic capacity compensated for lower stomatal conductance and sustained higher rates of photosynthesis in the grass compared to the dwarf shrub. In combination with dieback of aboveground biomass and reduction of stomatal conductance reduction during dry conditions, the grass continued to have high carbon uptake in the remaining leaves. The dwarf shrub endured the dry conditions by preserving shoot biomass and reducing stomatal conductance. Soil rewetting increased leaf nitrogen and photosynthesis in the grass much more than for the dwarf shrub.These different strategies may have a considerable impact on carbon uptake and on the ability of a species to compete, as future climatic changes are likely to extend the summer drought period together with the more frequent and extensive precipitation events outside the summer season.

U2 - 10.1016/j.actao.2012.09.003

DO - 10.1016/j.actao.2012.09.003

M3 - Journal article

VL - 45

SP - 79

EP - 87

JO - Acta Oecologica

JF - Acta Oecologica

SN - 1146-609X

ER -

ID: 44538730