Spatiotemporal Proteomic Profiling of Huntington's Disease Inclusions Reveals Widespread Loss of Protein Function

Research output: Contribution to journalJournal articleResearchpeer-review

  • Fabian Hosp
  • Sara Gutiérrez-Ángel
  • Martin H Schaefer
  • Jürgen Cox
  • Felix Meissner
  • Mark S Hipp
  • F-Ulrich Hartl
  • Rüdiger Klein
  • Irina Dudanova
  • Mann, Matthias

Aggregation of polyglutamine-expanded huntingtin exon 1 (HttEx1) in Huntington's disease (HD) proceeds from soluble oligomers to late-stage inclusions. The nature of the aggregates and how they lead to neuronal dysfunction is not well understood. We employed mass spectrometry (MS)-based quantitative proteomics to dissect spatiotemporal mechanisms of neurodegeneration using the R6/2 mouse model of HD. Extensive remodeling of the soluble brain proteome correlated with insoluble aggregate formation during disease progression. In-depth and quantitative characterization of the aggregates uncovered an unprecedented complexity of several hundred proteins. Sequestration to aggregates depended on protein expression levels and sequence features such as low-complexity regions or coiled-coil domains. In a cell-based HD model, overexpression of a subset of the sequestered proteins in most cases rescued viability and reduced aggregate size. Our spatiotemporally resolved proteome resource of HD progression indicates that widespread loss of cellular protein function contributes to aggregate-mediated toxicity.

Original languageEnglish
JournalCell Reports
Volume21
Issue number8
Pages (from-to)2291-2303
Number of pages13
ISSN2211-1247
DOIs
Publication statusPublished - 21 Nov 2017
Externally publishedYes

    Research areas

  • Journal Article

ID: 186194464