Role of GluR2 expression in AMPA-induced toxicity in cultured murine cerebral cortical neurons

Research output: Contribution to journalJournal articleResearchpeer-review

alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R)-mediated neurotoxicity was studied in relation to subunit expression and the presence of Ca(2+)-permeable receptor channels. AMPA-mediated toxicity had two components: 1) a direct AMPA-R-mediated component, which was not due to Ca(2+) influx through voltage-gated Ca(2+) channels, reversal of the Na(+)/Ca(2+) exchanger or release of calcium from dantrolene-sensitive intracellular Ca(2+) stores, and 2) a minor, indirect component involving activation of NMDA receptor channels, because of glutamate release and removal of the Mg(2+) block of the NMDA receptor on AMPA-R stimulation. The involvement of Ca(2+) influx through AMPA-R was also examined. The number of neurons possessing Ca(2+)-permeable AMPA-R increased during culture development, concurrently with an increasing susceptibility for AMPA-induced toxicity during development. GluR2(R) levels also increased during development, and channel blockers of Ca(2+)-permeable AMPA-R lacking the GluR2(R) subunit (spermine and philanthotoxin) failed to prevent neurotoxicity or increases in [Ca(2+)](i). Thus, the direct AMPA-R-mediated toxicity may be explained by initiation of cell death by Ca(2+) fluxing through AMPA-R containing GluR2(R). The components of direct AMPA-R-mediated toxicity are proposed to be 1) toxicity mediated by GluR2(R)-lacking AMPA-R and 2) toxicity mediated by low-Ca(2+)-permeability AMPA-R containing GluR2(R).
Original languageEnglish
JournalJournal of Neuroscience Research
Issue number3
Pages (from-to)267-277
Number of pages11
Publication statusPublished - 2001

Bibliographical note

Keywords: Animals; Apoptosis; Benzothiadiazines; Calcium; Calcium Channel Blockers; Calcium Channels; Calcium Signaling; Cells, Cultured; Cerebral Cortex; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Flunarizine; Gene Expression Regulation, Developmental; Ion Channel Gating; Lanthanum; Macromolecular Substances; Mice; Nerve Tissue Proteins; Neurons; Neuroprotective Agents; Nifedipine; Polyamines; Protein Subunits; Receptors, AMPA; Sodium; Sodium Channels; Sodium-Calcium Exchanger; Spermine; Tetrodotoxin; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; omega-Conotoxins

ID: 20122702