Puromycin-rRNA interaction sites at the peptidyl transferase center

Research output: Contribution to journalJournal articleResearchpeer-review

The binding site of puromycin was probed chemically in the peptidyl-transferase center of ribosomes from Escherichia coli and of puromycin-hypersensitive ribosomes from the archaeon Haloferax gibbonsii. Several nucleotides of the 23S rRNAs showed altered chemical reactivities in the presence of puromycin. They include A2439, G2505, and G2553 for E. coli, and G2058, A2503, G2505, and G2553 for Hf. gibbonsii (using the E. coli numbering system). Reproducible enhanced reactivities were also observed at A508 and A1579 within domains I and III, respectively, of E. coli 23S rRNA. In further experiments, puromycin was shown to produce a major reduction in the UV-induced crosslinking of deacylated-(2N3A76)tRNA to U2506 within the P' site of E. coli ribosomes. Moreover, it strongly stimulated the putative UV-induced crosslink between a streptogramin B drug and m2A2503/psi2504 at an adjacent site in E. coli 23S rRNA. These data strongly support the concept that puromycin, along with other peptidyl-transferase antibiotics, in particular the streptogramin B drugs, bind to an RNA structural motif that contains several conserved and accessible base moieties of the peptidyl transferase loop region. This streptogramin motif is also likely to provide binding sites for the 3' termini of the acceptor and donor tRNAs. In contrast, the effects at A508 and A1579, which are located at the exit site of the peptide channel, are likely to be caused by a structural effect transmitted along the peptide channel.
Original languageEnglish
JournalRNA: A publication of the RNA Society
Volume6
Issue number5
Pages (from-to)744-754
Number of pages10
ISSN1355-8382
Publication statusPublished - 2000

Bibliographical note

Keywords: Base Sequence; Binding Sites; Escherichia coli; Haloferax; Molecular Sequence Data; Peptidyl Transferases; Puromycin; RNA, Archaeal; RNA, Bacterial; RNA, Ribosomal; RNA, Transfer; Ribosomes; Substrate Specificity

ID: 182255