Massively parallel GPU enabled third-order cluster perturbation excitation energies for cost-effective large scale excitation energy calculations

Research output: Contribution to journalJournal articleResearchpeer-review

We present here a massively parallel implementation of the recently developed CPS(D-3) excitation energy model that is based on cluster perturbation theory. The new algorithm extends the one developed in Baudin et al. [J. Chem. Phys., 150, 134110 (2019)] to leverage multiple nodes and utilize graphical processing units for the acceleration of heavy tensor contractions. Furthermore, we show that the extended algorithm scales efficiently with increasing amounts of computational resources and that the developed code enables CPS(D-3) excitation energy calculations on large molecular systems with a low time-to-solution. More specifically, calculations on systems with over 100 atoms and 1000 basis functions are possible in a few hours of wall clock time. This establishes CPS(D-3) excitation energies as a computationally efficient alternative to those obtained from the coupled-cluster singles and doubles model.

Original languageEnglish
Article number144111
JournalJournal of Chemical Physics
Volume158
Issue number14
ISSN0021-9606
DOIs
Publication statusPublished - 2023

Bibliographical note

Funding Information:
This research used resources from the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract No. DEAC05-00OR22725. A.E.H.B. and K.V.M. acknowledge the Danish Council for Independent Research (Grant No. DFF-0136-00081B) and the European Union’s Horizon 2020 Framework Program under Grant Agreement No. 951801 for financial support.

Funding Information:
Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a non-exclusive, paid up, irrevocable, world-wide license to publish or reproduce the published form of the manuscript, or allow others to do so, for U.S. Government purposes. The DOE will provide public access to these results in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ).

Publisher Copyright:
© 2023 Author(s).

ID: 362458781