Genomic Characterization of Cyanophage vB_AphaS-CL131Infecting Filamentous Diazotrophic Cyanobacterium Aphanizomenon flos-aquae Reveals Novel Insights into Virus-Bacterium Interactions

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Genomic Characterization of Cyanophage vB_AphaS-CL131Infecting Filamentous Diazotrophic Cyanobacterium Aphanizomenon flos-aquae Reveals Novel Insights into Virus-Bacterium Interactions. / Šulčius, Sigitas; Šimoliūnas, Eugenijus; Alzbutas, Gediminas; Gasiūnas, Giedrius; Jauniškis, Vykintas; Kuznecova, Jolita; Miettinen, Sini; Nilsson, Emelie; Meškys, Rolandas; Roine, Elina; Paškauskas, Ričardas; Holmfeldt, Karin.

In: Applied and Environmental Microbiology, Vol. 85, No. 1, e01311-18, 2019.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Šulčius, S, Šimoliūnas, E, Alzbutas, G, Gasiūnas, G, Jauniškis, V, Kuznecova, J, Miettinen, S, Nilsson, E, Meškys, R, Roine, E, Paškauskas, R & Holmfeldt, K 2019, 'Genomic Characterization of Cyanophage vB_AphaS-CL131Infecting Filamentous Diazotrophic Cyanobacterium Aphanizomenon flos-aquae Reveals Novel Insights into Virus-Bacterium Interactions', Applied and Environmental Microbiology, vol. 85, no. 1, e01311-18. https://doi.org/10.1128/AEM.01311-18

APA

Šulčius, S., Šimoliūnas, E., Alzbutas, G., Gasiūnas, G., Jauniškis, V., Kuznecova, J., Miettinen, S., Nilsson, E., Meškys, R., Roine, E., Paškauskas, R., & Holmfeldt, K. (2019). Genomic Characterization of Cyanophage vB_AphaS-CL131Infecting Filamentous Diazotrophic Cyanobacterium Aphanizomenon flos-aquae Reveals Novel Insights into Virus-Bacterium Interactions. Applied and Environmental Microbiology, 85(1), [e01311-18]. https://doi.org/10.1128/AEM.01311-18

Vancouver

Šulčius S, Šimoliūnas E, Alzbutas G, Gasiūnas G, Jauniškis V, Kuznecova J et al. Genomic Characterization of Cyanophage vB_AphaS-CL131Infecting Filamentous Diazotrophic Cyanobacterium Aphanizomenon flos-aquae Reveals Novel Insights into Virus-Bacterium Interactions. Applied and Environmental Microbiology. 2019;85(1). e01311-18. https://doi.org/10.1128/AEM.01311-18

Author

Šulčius, Sigitas ; Šimoliūnas, Eugenijus ; Alzbutas, Gediminas ; Gasiūnas, Giedrius ; Jauniškis, Vykintas ; Kuznecova, Jolita ; Miettinen, Sini ; Nilsson, Emelie ; Meškys, Rolandas ; Roine, Elina ; Paškauskas, Ričardas ; Holmfeldt, Karin. / Genomic Characterization of Cyanophage vB_AphaS-CL131Infecting Filamentous Diazotrophic Cyanobacterium Aphanizomenon flos-aquae Reveals Novel Insights into Virus-Bacterium Interactions. In: Applied and Environmental Microbiology. 2019 ; Vol. 85, No. 1.

Bibtex

@article{32de32df59c341f4970aac412b385ecb,
title = "Genomic Characterization of Cyanophage vB_AphaS-CL131Infecting Filamentous Diazotrophic Cyanobacterium Aphanizomenon flos-aquae Reveals Novel Insights into Virus-Bacterium Interactions",
abstract = "While filamentous cyanobacteria play a crucial role in food web dynamics and biogeochemical cycling of many aquatic ecosystems around the globe, the knowledge regarding phages infecting them is limited. Here we describe the complete genome of the virulent cyanophage vB_AphaS-CL131 (CL 131), a Siphoviridae phage that infects filamentous diazotrophic bloom forming cyanobacterium Aphanizomenon flos-aquae in the brackish Baltic Sea. CL 131 features a 112793 bp dsDNA genome, encompassing 149 putative open reading frames (ORFs), of which the majority (86%) lack sequence homology to genes with known functions in other bacteriophages or bacteria. Phylogenetic analysis revealed that CL 131 possibly represents a new evolutionary lineage within the group of cyanophages infecting filamentous cyanobacteria, which form a separate cluster compared to phages infecting unicellular cyanobacteria. CL 131 encodes a putative type V-U2 CRISPR-Cas system with one spacer (out of 10) targeting a DNA primase pseudogene in a cyanobacterium and a putative type II toxin-antitoxin system, consisting of GNAT family N-acetyltransferase and a protein of unknown function containing the PRK09726 domain (characteristic of HipB antitoxins). Comparison of CL 131 proteins to reads from Baltic Sea and other available fresh- and brackish-water metagenomes and analysis of CRISPR-Cas arrays in publicly available A. flos-aquae genomes demonstrated that phages similar to CL 131 are present and dynamic in the Baltic Sea and share common history with their hosts dating back at least several decades. In addition, different CRISPR-Cas systems within individual A. flos-aquae genomes targeted several sequences in the CL 131 genome, including genes related to virion structure and morphogenesis. Altogether, these findings revealed new genomic information for exploring viral diversity and provide a model system for investigation of virus-host interactions in filamentous cyanobacteria.Importance The genomic characterization of novel cyanophage vB_AphaS-CL131 and the analysis of its genomic features in the context of other viruses, metagenomic data and host CRISPR-Cas systems contribute toward better understanding of aquatic viral diversity and distribution in general and brackish water cyanophages infecting filamentous diazotrophic cyanobacteria in the Baltic Sea in particular. The results of this study revealed previously undescribed features of cyanophage genomes (e.g. self-excising intein-containing putative dCTP deaminase, putative cyanophage-encoded CRISPR-Cas and toxin-antitoxin systems) and can therefore be used to predict potential interactions between bloom-forming cyanobacteria and their cyanophages.",
author = "Sigitas {\v S}ul{\v c}ius and Eugenijus {\v S}imoliūnas and Gediminas Alzbutas and Giedrius Gasiūnas and Vykintas Jauni{\v s}kis and Jolita Kuznecova and Sini Miettinen and Emelie Nilsson and Rolandas Me{\v s}kys and Elina Roine and Ri{\v c}ardas Pa{\v s}kauskas and Karin Holmfeldt",
note = "Copyright {\textcopyright} 2018 {\v S}ul{\v c}ius et al.",
year = "2019",
doi = "10.1128/AEM.01311-18",
language = "English",
volume = "85",
journal = "Applied and Environmental Microbiology",
issn = "0099-2240",
publisher = "American Society for Microbiology",
number = "1",

}

RIS

TY - JOUR

T1 - Genomic Characterization of Cyanophage vB_AphaS-CL131Infecting Filamentous Diazotrophic Cyanobacterium Aphanizomenon flos-aquae Reveals Novel Insights into Virus-Bacterium Interactions

AU - Šulčius, Sigitas

AU - Šimoliūnas, Eugenijus

AU - Alzbutas, Gediminas

AU - Gasiūnas, Giedrius

AU - Jauniškis, Vykintas

AU - Kuznecova, Jolita

AU - Miettinen, Sini

AU - Nilsson, Emelie

AU - Meškys, Rolandas

AU - Roine, Elina

AU - Paškauskas, Ričardas

AU - Holmfeldt, Karin

N1 - Copyright © 2018 Šulčius et al.

PY - 2019

Y1 - 2019

N2 - While filamentous cyanobacteria play a crucial role in food web dynamics and biogeochemical cycling of many aquatic ecosystems around the globe, the knowledge regarding phages infecting them is limited. Here we describe the complete genome of the virulent cyanophage vB_AphaS-CL131 (CL 131), a Siphoviridae phage that infects filamentous diazotrophic bloom forming cyanobacterium Aphanizomenon flos-aquae in the brackish Baltic Sea. CL 131 features a 112793 bp dsDNA genome, encompassing 149 putative open reading frames (ORFs), of which the majority (86%) lack sequence homology to genes with known functions in other bacteriophages or bacteria. Phylogenetic analysis revealed that CL 131 possibly represents a new evolutionary lineage within the group of cyanophages infecting filamentous cyanobacteria, which form a separate cluster compared to phages infecting unicellular cyanobacteria. CL 131 encodes a putative type V-U2 CRISPR-Cas system with one spacer (out of 10) targeting a DNA primase pseudogene in a cyanobacterium and a putative type II toxin-antitoxin system, consisting of GNAT family N-acetyltransferase and a protein of unknown function containing the PRK09726 domain (characteristic of HipB antitoxins). Comparison of CL 131 proteins to reads from Baltic Sea and other available fresh- and brackish-water metagenomes and analysis of CRISPR-Cas arrays in publicly available A. flos-aquae genomes demonstrated that phages similar to CL 131 are present and dynamic in the Baltic Sea and share common history with their hosts dating back at least several decades. In addition, different CRISPR-Cas systems within individual A. flos-aquae genomes targeted several sequences in the CL 131 genome, including genes related to virion structure and morphogenesis. Altogether, these findings revealed new genomic information for exploring viral diversity and provide a model system for investigation of virus-host interactions in filamentous cyanobacteria.Importance The genomic characterization of novel cyanophage vB_AphaS-CL131 and the analysis of its genomic features in the context of other viruses, metagenomic data and host CRISPR-Cas systems contribute toward better understanding of aquatic viral diversity and distribution in general and brackish water cyanophages infecting filamentous diazotrophic cyanobacteria in the Baltic Sea in particular. The results of this study revealed previously undescribed features of cyanophage genomes (e.g. self-excising intein-containing putative dCTP deaminase, putative cyanophage-encoded CRISPR-Cas and toxin-antitoxin systems) and can therefore be used to predict potential interactions between bloom-forming cyanobacteria and their cyanophages.

AB - While filamentous cyanobacteria play a crucial role in food web dynamics and biogeochemical cycling of many aquatic ecosystems around the globe, the knowledge regarding phages infecting them is limited. Here we describe the complete genome of the virulent cyanophage vB_AphaS-CL131 (CL 131), a Siphoviridae phage that infects filamentous diazotrophic bloom forming cyanobacterium Aphanizomenon flos-aquae in the brackish Baltic Sea. CL 131 features a 112793 bp dsDNA genome, encompassing 149 putative open reading frames (ORFs), of which the majority (86%) lack sequence homology to genes with known functions in other bacteriophages or bacteria. Phylogenetic analysis revealed that CL 131 possibly represents a new evolutionary lineage within the group of cyanophages infecting filamentous cyanobacteria, which form a separate cluster compared to phages infecting unicellular cyanobacteria. CL 131 encodes a putative type V-U2 CRISPR-Cas system with one spacer (out of 10) targeting a DNA primase pseudogene in a cyanobacterium and a putative type II toxin-antitoxin system, consisting of GNAT family N-acetyltransferase and a protein of unknown function containing the PRK09726 domain (characteristic of HipB antitoxins). Comparison of CL 131 proteins to reads from Baltic Sea and other available fresh- and brackish-water metagenomes and analysis of CRISPR-Cas arrays in publicly available A. flos-aquae genomes demonstrated that phages similar to CL 131 are present and dynamic in the Baltic Sea and share common history with their hosts dating back at least several decades. In addition, different CRISPR-Cas systems within individual A. flos-aquae genomes targeted several sequences in the CL 131 genome, including genes related to virion structure and morphogenesis. Altogether, these findings revealed new genomic information for exploring viral diversity and provide a model system for investigation of virus-host interactions in filamentous cyanobacteria.Importance The genomic characterization of novel cyanophage vB_AphaS-CL131 and the analysis of its genomic features in the context of other viruses, metagenomic data and host CRISPR-Cas systems contribute toward better understanding of aquatic viral diversity and distribution in general and brackish water cyanophages infecting filamentous diazotrophic cyanobacteria in the Baltic Sea in particular. The results of this study revealed previously undescribed features of cyanophage genomes (e.g. self-excising intein-containing putative dCTP deaminase, putative cyanophage-encoded CRISPR-Cas and toxin-antitoxin systems) and can therefore be used to predict potential interactions between bloom-forming cyanobacteria and their cyanophages.

U2 - 10.1128/AEM.01311-18

DO - 10.1128/AEM.01311-18

M3 - Journal article

C2 - 30367000

VL - 85

JO - Applied and Environmental Microbiology

JF - Applied and Environmental Microbiology

SN - 0099-2240

IS - 1

M1 - e01311-18

ER -

ID: 204343663