Effects of tree pollen on throughfall element fluxes in European forests

Research output: Contribution to journalJournal articleResearchpeer-review

  • Arne Verstraeten
  • Nicolas Bruffaerts
  • Fabiana Cristofolini
  • Elena Vanguelova
  • Johan Neirynck
  • Gerrit Genouw
  • Bruno De Vos
  • Peter Waldner
  • Anne Thimonier
  • Anita Nussbaumer
  • Mathias Neumann
  • Sue Benham
  • Pasi Rautio
  • Liisa Ukonmaanaho
  • Päivi Merilä
  • Antti Jussi Lindroos
  • Annika Saarto
  • Jukka Reiniharju
  • Nicholas Clarke
  • Volkmar Timmermann
  • Manuel Nicolas
  • Maria Schmitt
  • Katrin Meusburger
  • Anna Kowalska
  • Idalia Kasprzyk
  • Katarzyna Kluska
  • Łukasz Grewling
  • Małgorzata Malkiewicz
  • Miklós Manninger
  • Donát Magyar
  • Hugues Titeux
  • Gunilla Pihl Karlsson
  • Regula Gehrig
  • Sandy Adriaenssens
  • Agneta Ekebom
  • Åslög Dahl
  • Marco Ferretti
  • Elena Gottardini

The effects of tree pollen on precipitation chemistry are not fully understood and this can lead to misinterpretations of element deposition in European forests. We investigated the relationship between forest throughfall (TF) element fluxes and the Seasonal Pollen Integral (SPIn) using linear mixed-effects modelling (LME). TF was measured in 1990–2018 during the main pollen season (MPS, arbitrary two months) in 61 managed, mostly pure, even-aged Fagus, Quercus, Pinus, and Picea stands which are part of the ICP Forests Level II network. The SPIn for the dominant tree genus was observed at 56 aerobiological monitoring stations in nearby cities. The net contribution of pollen was estimated as the TF flux in the MPS minus the fluxes in the preceding and succeeding months. In stands of Fagus and Picea, two genera that do not form large amounts of flowers every year, TF fluxes of potassium (K+), ammonium-nitrogen (NH4+-N), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) showed a positive relationship with SPIn. However- for Fagus- a negative relationship was found between TF nitrate-nitrogen (NO3-N) fluxes and SPIn. For Quercus and Pinus, two genera producing many flowers each year, SPIn displayed limited variability and no clear association with TF element fluxes. Overall, pollen contributed on average 4.1–10.6% of the annual TF fluxes of K+ > DOC > DON > NH4+-N with the highest contribution in Quercus > Fagus > Pinus > Picea stands. Tree pollen appears to affect TF inorganic nitrogen fluxes both qualitatively and quantitatively, acting as a source of NH4+-N and a sink of NO3-N. Pollen appears to play a more complex role in nutrient cycling than previously thought.

Original languageEnglish
JournalBiogeochemistry
Volume165
Pages (from-to)311–325
Number of pages15
ISSN0168-2563
DOIs
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG.

    Research areas

  • Airborne pollen concentrations, Dissolved organic carbon, ICP Forests, Nitrogen, Potassium, Throughfall

ID: 368346502