Altered expression of epithelial cell surface glycoconjugates and intermediate filaments at the margins of mucosal wounds

Research output: Contribution to journalJournal articleResearchpeer-review

Alterations in cell to cell adhesion are necessary to enable the type of cell movements that are associated with epithelial wound healing and malignant invasion. Several studies of transformed cells have related epithelial cell movement to changes in the cell surface expression of the carbohydrate structures represented by the ABO blood group antigens and, in particular, by Lewis antigens and their biosynthetic precursors. To study further the relationship between cell surface carbohydrates and keratinocyte cell movement, experimental wounds were created in human oral mucosa and examined by immunohistochemical methods for their expression of selected cytokeratins (K5, K16, K19), basement membrane components (laminin alpha5 and gamma2-chains, BP180, collagen IV and collagen VII), and blood group antigen precursor structures Le(x), sialosyl-Le(x), Le(y), H antigen, N-acetyllactosamine, and sialosyl-T antigen. The changes induced by wounding in the expression of collagen IV, laminin gamma2-chain (laminin-5), and laminin alpha5-chain were similar to those found in skin wounds and served to define the region of epithelial movement. This region was found to show a marked increase in staining for both Lewis antigen Y (Le(y)) and H blood group antigen, and decreased staining of Le(x), thus indicating an upregulation in wounded epithelium of the fucosyltransferases responsible for the synthesis of the H antigen. The changes in carbohydrate expression extended beyond the wound margin into the nonwounded epithelium, a pattern of expression similar to K16, which was also strongly upregulated in both the outgrowth and the adjacent nonwounded epithelium. These findings provide further support for an influence of such carbohydrate structures on the migratory behavior of epithelial cells.

Original languageEnglish
JournalJournal of Investigative Dermatology
Volume111
Issue number4
Pages (from-to)592-7
Number of pages6
ISSN0022-202X
DOIs
Publication statusPublished - 1998

    Research areas

  • Adult, Antibodies, Cell Movement, Glycoconjugates, Humans, Keratins, Laminin, Lewis Blood-Group System, Membrane Glycoproteins, Mouth Mucosa, Tissue Distribution, Wound Healing, Wounds and Injuries

ID: 119593850