7-Phenoxy-Substituted 3,4-Dihydro-2H-1,2,4-benzothiadiazine 1,1-Dioxides as Positive Allosteric Modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors with Nanomolar Potency
Research output: Contribution to journal › Journal article › peer-review
We report here the synthesis of 7-phenoxy-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides and their evaluation as AMPA receptor positive allosteric modulators (AMPApams). The impact of substitution on the phenoxy ring and on the nitrogen atom at the 4-position was examined. At GluA2(Q) expressed in HEK293 cells (calcium flux experiment), the most potent compound was 11m (4-cyclopropyl-7-(3-methoxyphenoxy)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide, EC50 = 2.0 nM). The Hill coefficient in the screening and the shape of the dimerization curve in small-angle X-ray scattering (SAXS) experiments using isolated GluA2 ligand-binding domain (GluA2-LBD) are consistent with binding of one molecule of 11m per dimer interface, contrary to most benzothiadiazine dioxides developed to date. This observation was confirmed by the X-ray structure of 11m bound to GluA2-LBD and by NMR. This is the first benzothiadiazine dioxide AMPApam to reach the nanomolar range.
Original language | English |
---|---|
Journal | Journal of Medicinal Chemistry |
Volume | 61 |
Issue number | 1 |
Pages (from-to) | 251–264 |
ISSN | 0022-2623 |
DOIs | |
Publication status | Published - Jan 2018 |
- Journal Article
Research areas
ID: 187554241