Vessel effects in organic chemical reactions; a century-old, overlooked phenomenon

Research output: Contribution to journalReviewResearchpeer-review

Documents

  • Fulltext

    Final published version, 1.13 MB, PDF document

One of the most intriguing aspects of synthetic chemistry is the interplay of numerous dependent and independent variables en route to achieve a successful, high-yielding chemical transformation. The experienced synthetic chemist will probe many of these variables during reaction development and optimization, which will routinely involve investigation of reaction temperature, solvent, stoichiometry, concentration, time, choice of catalyst, addition sequence or quenching conditions just to name some commonly addressed variables. Remarkably, little attention is typically given to the choice of reaction vessel material as the surface of common laboratory borosilicate glassware is, incorrectly, assumed to be chemically inert. When reviewing the scientific literature, careful consideration of the vessel material is typically only given during the use of well-known glass-etching reagents such as HF, which is typically only handled in HF-resistant, polyfluorinated polymer vessels. However, there are examples of chemical transformations that do not involve such reagents but are still clearly influenced by the choice of reaction vessel material. In the following review, we wish to condense the most significant examples of vessel effects during chemical transformations as well as observations of container-dependent stability of certain molecules. While the primary focus is on synthetic organic chemistry, relevant examples from inorganic chemistry, polymerization reactions, atmospheric chemistry and prebiotic chemistry are also covered.
Original languageEnglish
JournalChemical Science
Volume13
Issue number21
Pages (from-to)6181–6196
Number of pages16
ISSN2041-6520
DOIs
Publication statusPublished - 2022

ID: 307754638