High-J CO survey of low-mass protostars observed with Herschel-HIFI

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

High-J CO survey of low-mass protostars observed with Herschel-HIFI. / Yıldız, U. A.; Kristensen, L. E.; van Dishoeck, E. F.; San José-García, I.; Karska, A.; Harsono, D.; Tafalla, M.; Fuente, A.; Visser, R.; Jørgensen, Jes Kristian; Hogerheijde, M. R.

In: Astronomy & Astrophysics, Vol. 556, A89, 01.08.2013.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Yıldız, UA, Kristensen, LE, van Dishoeck, EF, San José-García, I, Karska, A, Harsono, D, Tafalla, M, Fuente, A, Visser, R, Jørgensen, JK & Hogerheijde, MR 2013, 'High-J CO survey of low-mass protostars observed with Herschel-HIFI', Astronomy & Astrophysics, vol. 556, A89. https://doi.org/10.1051/0004-6361/201220849

APA

Yıldız, U. A., Kristensen, L. E., van Dishoeck, E. F., San José-García, I., Karska, A., Harsono, D., Tafalla, M., Fuente, A., Visser, R., Jørgensen, J. K., & Hogerheijde, M. R. (2013). High-J CO survey of low-mass protostars observed with Herschel-HIFI. Astronomy & Astrophysics, 556, [A89]. https://doi.org/10.1051/0004-6361/201220849

Vancouver

Yıldız UA, Kristensen LE, van Dishoeck EF, San José-García I, Karska A, Harsono D et al. High-J CO survey of low-mass protostars observed with Herschel-HIFI. Astronomy & Astrophysics. 2013 Aug 1;556. A89. https://doi.org/10.1051/0004-6361/201220849

Author

Yıldız, U. A. ; Kristensen, L. E. ; van Dishoeck, E. F. ; San José-García, I. ; Karska, A. ; Harsono, D. ; Tafalla, M. ; Fuente, A. ; Visser, R. ; Jørgensen, Jes Kristian ; Hogerheijde, M. R. / High-J CO survey of low-mass protostars observed with Herschel-HIFI. In: Astronomy & Astrophysics. 2013 ; Vol. 556.

Bibtex

@article{5e49573310ae42b0b8459da3322ab1fa,
title = "High-J CO survey of low-mass protostars observed with Herschel-HIFI",
abstract = "Context. In the deeply embedded stage of star formation, protostars start to heat and disperse their surrounding cloud cores. The evolution of these sources has traditionally been traced through dust continuum spectral energy distributions (SEDs), but the use of CO excitation as an evolutionary probe has not yet been explored due to the lack of high-J CO observations. Aims: The aim is to constrain the physical characteristics (excitation, kinematics, column density) of the warm gas in low-mass protostellar envelopes using spectrally resolved Herschel data of CO and compare those with the colder gas traced by lower excitation lines. Methods: Herschel-HIFI observations of high-J lines of 12CO, 13CO, and C18O (up to Ju = 10, Eu up to 300 K) are presented toward 26 deeply embedded low-mass Class 0 and Class I young stellar objects, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. This is the first large spectrally resolved high-J CO survey conducted for these types of sources. Complementary lower J CO maps were observed using ground-based telescopes, such as the JCMT and APEX and convolved to matching beam sizes. Results: The 12CO 10-9 line is detected for all objects and can generally be decomposed into a narrow and a broad component owing to the quiescent envelope and entrained outflow material, respectively. The 12CO excitation temperature increases with velocity from ~60 K up to ~130 K. The median excitation temperatures for 12CO, 13CO, and C18O derived from single-temperature fits to the Ju = 2-10 integrated intensities are ~70 K, 48 K and 37 K, respectively, with no significant difference between Class 0 and Class I sources and no trend with Menv or Lbol. Thus, in contrast to the continuum SEDs, the spectral line energy distributions (SLEDs) do not show any evolution during the embedded stage. In contrast, the integrated line intensities of all CO isotopologs show a clear decrease with evolutionary stage as the envelope is dispersed. Models of the collapse and evolution of protostellar envelopes reproduce the C18O results well, but underproduce the 13CO and 12CO excitation temperatures, due to lack of UV heating and outflow components in those models. The H2O 110 - 101/CO 10-9 intensity ratio does not change significantly with velocity, in contrast to the H2O/CO 3-2 ratio, indicating that CO 10-9 is the lowest transition for which the line wings probe the same warm shocked gas as H2O. Modeling of the full suite of C18O lines indicates an abundance profile for Class 0 sources that is consistent with a freeze-out zone below 25 K and evaporation at higher temperatures, but with some fraction of the CO transformed into other species in the cold phase. In contrast, the observations for two Class I sources in Ophiuchus are consistent with a constant high CO abundance profile. Conclusions: The velocity resolved line profiles trace the evolution from the Class 0 to the Class I phase through decreasing line intensities, less prominent outflow wings, and increasing average CO abundances. However, the CO excitation temperature stays nearly constant. The multiple components found here indicate that the analysis of spectrally unresolved data, such as provided by SPIRE and PACS, must be done with caution. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices C and D are available in electronic form at http://www.aanda.org",
keywords = "astrochemistry, stars: formation, stars: protostars, ISM: molecules, techniques: spectroscopic",
author = "Yıldız, {U. A.} and Kristensen, {L. E.} and {van Dishoeck}, {E. F.} and {San Jos{\'e}-Garc{\'i}a}, I. and A. Karska and D. Harsono and M. Tafalla and A. Fuente and R. Visser and J{\o}rgensen, {Jes Kristian} and Hogerheijde, {M. R.}",
year = "2013",
month = aug,
day = "1",
doi = "10.1051/0004-6361/201220849",
language = "English",
volume = "556",
journal = "Astronomy & Astrophysics",
issn = "0004-6361",
publisher = "E D P Sciences",

}

RIS

TY - JOUR

T1 - High-J CO survey of low-mass protostars observed with Herschel-HIFI

AU - Yıldız, U. A.

AU - Kristensen, L. E.

AU - van Dishoeck, E. F.

AU - San José-García, I.

AU - Karska, A.

AU - Harsono, D.

AU - Tafalla, M.

AU - Fuente, A.

AU - Visser, R.

AU - Jørgensen, Jes Kristian

AU - Hogerheijde, M. R.

PY - 2013/8/1

Y1 - 2013/8/1

N2 - Context. In the deeply embedded stage of star formation, protostars start to heat and disperse their surrounding cloud cores. The evolution of these sources has traditionally been traced through dust continuum spectral energy distributions (SEDs), but the use of CO excitation as an evolutionary probe has not yet been explored due to the lack of high-J CO observations. Aims: The aim is to constrain the physical characteristics (excitation, kinematics, column density) of the warm gas in low-mass protostellar envelopes using spectrally resolved Herschel data of CO and compare those with the colder gas traced by lower excitation lines. Methods: Herschel-HIFI observations of high-J lines of 12CO, 13CO, and C18O (up to Ju = 10, Eu up to 300 K) are presented toward 26 deeply embedded low-mass Class 0 and Class I young stellar objects, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. This is the first large spectrally resolved high-J CO survey conducted for these types of sources. Complementary lower J CO maps were observed using ground-based telescopes, such as the JCMT and APEX and convolved to matching beam sizes. Results: The 12CO 10-9 line is detected for all objects and can generally be decomposed into a narrow and a broad component owing to the quiescent envelope and entrained outflow material, respectively. The 12CO excitation temperature increases with velocity from ~60 K up to ~130 K. The median excitation temperatures for 12CO, 13CO, and C18O derived from single-temperature fits to the Ju = 2-10 integrated intensities are ~70 K, 48 K and 37 K, respectively, with no significant difference between Class 0 and Class I sources and no trend with Menv or Lbol. Thus, in contrast to the continuum SEDs, the spectral line energy distributions (SLEDs) do not show any evolution during the embedded stage. In contrast, the integrated line intensities of all CO isotopologs show a clear decrease with evolutionary stage as the envelope is dispersed. Models of the collapse and evolution of protostellar envelopes reproduce the C18O results well, but underproduce the 13CO and 12CO excitation temperatures, due to lack of UV heating and outflow components in those models. The H2O 110 - 101/CO 10-9 intensity ratio does not change significantly with velocity, in contrast to the H2O/CO 3-2 ratio, indicating that CO 10-9 is the lowest transition for which the line wings probe the same warm shocked gas as H2O. Modeling of the full suite of C18O lines indicates an abundance profile for Class 0 sources that is consistent with a freeze-out zone below 25 K and evaporation at higher temperatures, but with some fraction of the CO transformed into other species in the cold phase. In contrast, the observations for two Class I sources in Ophiuchus are consistent with a constant high CO abundance profile. Conclusions: The velocity resolved line profiles trace the evolution from the Class 0 to the Class I phase through decreasing line intensities, less prominent outflow wings, and increasing average CO abundances. However, the CO excitation temperature stays nearly constant. The multiple components found here indicate that the analysis of spectrally unresolved data, such as provided by SPIRE and PACS, must be done with caution. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices C and D are available in electronic form at http://www.aanda.org

AB - Context. In the deeply embedded stage of star formation, protostars start to heat and disperse their surrounding cloud cores. The evolution of these sources has traditionally been traced through dust continuum spectral energy distributions (SEDs), but the use of CO excitation as an evolutionary probe has not yet been explored due to the lack of high-J CO observations. Aims: The aim is to constrain the physical characteristics (excitation, kinematics, column density) of the warm gas in low-mass protostellar envelopes using spectrally resolved Herschel data of CO and compare those with the colder gas traced by lower excitation lines. Methods: Herschel-HIFI observations of high-J lines of 12CO, 13CO, and C18O (up to Ju = 10, Eu up to 300 K) are presented toward 26 deeply embedded low-mass Class 0 and Class I young stellar objects, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. This is the first large spectrally resolved high-J CO survey conducted for these types of sources. Complementary lower J CO maps were observed using ground-based telescopes, such as the JCMT and APEX and convolved to matching beam sizes. Results: The 12CO 10-9 line is detected for all objects and can generally be decomposed into a narrow and a broad component owing to the quiescent envelope and entrained outflow material, respectively. The 12CO excitation temperature increases with velocity from ~60 K up to ~130 K. The median excitation temperatures for 12CO, 13CO, and C18O derived from single-temperature fits to the Ju = 2-10 integrated intensities are ~70 K, 48 K and 37 K, respectively, with no significant difference between Class 0 and Class I sources and no trend with Menv or Lbol. Thus, in contrast to the continuum SEDs, the spectral line energy distributions (SLEDs) do not show any evolution during the embedded stage. In contrast, the integrated line intensities of all CO isotopologs show a clear decrease with evolutionary stage as the envelope is dispersed. Models of the collapse and evolution of protostellar envelopes reproduce the C18O results well, but underproduce the 13CO and 12CO excitation temperatures, due to lack of UV heating and outflow components in those models. The H2O 110 - 101/CO 10-9 intensity ratio does not change significantly with velocity, in contrast to the H2O/CO 3-2 ratio, indicating that CO 10-9 is the lowest transition for which the line wings probe the same warm shocked gas as H2O. Modeling of the full suite of C18O lines indicates an abundance profile for Class 0 sources that is consistent with a freeze-out zone below 25 K and evaporation at higher temperatures, but with some fraction of the CO transformed into other species in the cold phase. In contrast, the observations for two Class I sources in Ophiuchus are consistent with a constant high CO abundance profile. Conclusions: The velocity resolved line profiles trace the evolution from the Class 0 to the Class I phase through decreasing line intensities, less prominent outflow wings, and increasing average CO abundances. However, the CO excitation temperature stays nearly constant. The multiple components found here indicate that the analysis of spectrally unresolved data, such as provided by SPIRE and PACS, must be done with caution. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices C and D are available in electronic form at http://www.aanda.org

KW - astrochemistry

KW - stars: formation

KW - stars: protostars

KW - ISM: molecules

KW - techniques: spectroscopic

U2 - 10.1051/0004-6361/201220849

DO - 10.1051/0004-6361/201220849

M3 - Journal article

VL - 556

JO - Astronomy & Astrophysics

JF - Astronomy & Astrophysics

SN - 0004-6361

M1 - A89

ER -

ID: 49730392