2022 roadmap on low temperature electrochemical CO2 reduction

Research output: Contribution to journalReviewResearchpeer-review

Documents

  • Fulltext

    Final published version, 18.4 MB, PDF document

  • Ifan E. L. Stephens
  • Karen Chan
  • Alexander Bagger
  • Shannon W. Boettcher
  • Julien Bonin
  • Etienne Boutin
  • Aya K. Buckley
  • Raffaella Buonsanti
  • Etosha R. Cave
  • Xiaoxia Chang
  • See Wee Chee
  • Alisson H. M. da Silva
  • Phil de Luna
  • Oliver Einsle
  • Balazs Endrodi
  • Jorge V. Ferreira de Araujo
  • Marta C. Figueiredo
  • Christopher Hahn
  • Kentaro U. Hansen
  • Sophia Haussener
  • Sara Hunegnaw
  • Ziyang Huo
  • Yun Jeong Hwang
  • Csaba Janaky
  • Buddhinie S. Jayathilake
  • Feng Jiao
  • Zarko P. Jovanov
  • Parisa Karimi
  • Marc T. M. Koper
  • Kendra P. Kuhl
  • Woong Hee Lee
  • Zhiqin Liang
  • Xuan Liu
  • Sichao Ma
  • Ming Ma
  • Hyung-Suk Oh
  • Marc Robert
  • Beatriz Roldan Cuenya
  • Claudie Roy
  • Mary P. Ryan
  • Edward H. Sargent
  • Brian Seger
  • Ludmilla Steier
  • Peter Strasser
  • Ana Sofia Varela
  • Rafael E. Vos
  • Xue Wang
  • Bingjun Xu
  • Hossein Yadegari
  • Yuxiang Zhou

Electrochemical CO2 reduction (CO2R) is an attractive option for storing renewable electricity and for the sustainable production of valuable chemicals and fuels. In this roadmap, we review recent progress in fundamental understanding, catalyst development, and in engineering and scale-up. We discuss the outstanding challenges towards commercialization of electrochemical CO2R technology: energy efficiencies, selectivities, low current densities, and stability. We highlight the opportunities in establishing rigorous standards for benchmarking performance, advances in in operando characterization, the discovery of new materials towards high value products, the investigation of phenomena across multiple-length scales and the application of data science towards doing so. We hope that this collective perspective sparks new research activities that ultimately bring us a step closer towards establishing a low- or zero-emission carbon cycle.

Original languageEnglish
Article number042003
JournalJPhys Energy
Volume4
Issue number4
Number of pages84
ISSN2515-7655
DOIs
Publication statusPublished - 1 Oct 2022

    Research areas

  • electrocatalysis, CO2 reduction, electrochemistry, solar fuels, CARBON-DIOXIDE CAPTURE, ELECTROCATALYTIC CONVERSION, SELECTIVE ELECTROREDUCTION, TECHNOECONOMIC ANALYSIS, ACCELERATED DISCOVERY, MECHANISTIC INSIGHTS, BIPOLAR MEMBRANES, METAL-ELECTRODES, STRUCTURAL BASIS, LIQUID FUEL

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 322645516