No effect of ablation of surfactant protein-D on acute cerebral infarction in mice

Research output: Contribution to journalJournal articleResearchpeer-review

Kate Lykke Lambertsen, Kamilla Østergaard, Bettina Hjelm Clausen, Søren Hansen, Jan Stenvang, Stine Buch Thorsen, Michael Meldgaard, Bjarne Winther Kristensen, Pernille B. Lærkegaard Hansen, Grith Lykke Sørensen, Bente Finsen

BACKGROUND: Crosstalk between the immune system in the brain and the periphery may contribute to the long-term outcome both in experimental and clinical stroke. Although, the immune defense collectin surfactant protein-D (SP-D) is best known for its role in pulmonary innate immunity, SP-D is also known to be involved in extrapulmonary modulation of inflammation in mice. We investigated whether SP-D affected cerebral ischemic infarction and ischemia-induced inflammatory responses in mice.

METHODS: The effect of SP-D was studied by comparing the size of ischemic infarction and the inflammatory and astroglial responses in SP-D knock out (KO) and wild type (WT) mice subjected to permanent middle cerebral artery occlusion. SP-D mRNA production was assessed in isolated cerebral arteries and in the whole brain by PCR, and SP-D protein in normal appearing and ischemic human brain by immunohistochemistry. Changes in plasma SP-D and TNF were assessed by ELISA and proximity ligation assay, respectively.

RESULTS: Infarct volumetric analysis showed that ablation of SP-D had no effect on ischemic infarction one and five days after induction of ischemia. Further, ablation of SP-D had no effect on the ischemia-induced increase in TNF mRNA production one day after induction of ischemia; however the TNF response to the ischemic insult was affected at five days. SP-D mRNA was not detected in parenchymal brain cells in either naïve mice or in mice subjected to focal cerebral ischemia. However, SP-D mRNA was detected in middle cerebral artery cells in WT mice and SP-D protein in vascular cells both in normal appearing and ischemic human brain tissue. Measurements of the levels of SP-D and TNF in plasma in mice suggested that levels were unaffected by the ischemic insult. Microglial-leukocyte and astroglial responses were comparable in SP-D KO and WT mice.

CONCLUSIONS: SP-D synthesis in middle cerebral artery cells is consistent with SP-D conceivably leaking into the infarcted area and affecting local cytokine production. However, there was no SP-D synthesis in parenchymal brain cells and ablation of SP-D had no effect on ischemic cerebral infarction.

Original languageEnglish
Article number123
JournalJournal of Neuroinflammation
Volume11
Number of pages13
ISSN1742-2094
DOIs
Publication statusPublished - 2014

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 125944450