Hepatic oxidative stress, genotoxicity and vascular dysfunction in lean or obese zucker rats

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Hepatic oxidative stress, genotoxicity and vascular dysfunction in lean or obese zucker rats. / Løhr, Mille; Folkmann, Janne Kjærsgaard; Sheykhzade, Majid; Jensen, Lars Jørn; Kermanizadeh, Ali; Loft, Steffen; Møller, Peter.

In: PLOS ONE, Vol. 10, No. 3, e0118773, 04.03.2015.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Løhr, M, Folkmann, JK, Sheykhzade, M, Jensen, LJ, Kermanizadeh, A, Loft, S & Møller, P 2015, 'Hepatic oxidative stress, genotoxicity and vascular dysfunction in lean or obese zucker rats', PLOS ONE, vol. 10, no. 3, e0118773. https://doi.org/10.1371/journal.pone.0118773

APA

Løhr, M., Folkmann, J. K., Sheykhzade, M., Jensen, L. J., Kermanizadeh, A., Loft, S., & Møller, P. (2015). Hepatic oxidative stress, genotoxicity and vascular dysfunction in lean or obese zucker rats. PLOS ONE, 10(3), [e0118773]. https://doi.org/10.1371/journal.pone.0118773

Vancouver

Løhr M, Folkmann JK, Sheykhzade M, Jensen LJ, Kermanizadeh A, Loft S et al. Hepatic oxidative stress, genotoxicity and vascular dysfunction in lean or obese zucker rats. PLOS ONE. 2015 Mar 4;10(3). e0118773. https://doi.org/10.1371/journal.pone.0118773

Author

Løhr, Mille ; Folkmann, Janne Kjærsgaard ; Sheykhzade, Majid ; Jensen, Lars Jørn ; Kermanizadeh, Ali ; Loft, Steffen ; Møller, Peter. / Hepatic oxidative stress, genotoxicity and vascular dysfunction in lean or obese zucker rats. In: PLOS ONE. 2015 ; Vol. 10, No. 3.

Bibtex

@article{53ebd05213b34d84a764385237de1e4f,
title = "Hepatic oxidative stress, genotoxicity and vascular dysfunction in lean or obese zucker rats",
abstract = "Metabolic syndrome is associated with increased risk of cardiovascular disease, which could be related to oxidative stress. Here, we investigated the associations between hepatic oxidative stress and vascular function in pressurized mesenteric arteries from lean and obese Zucker rats at 14, 24 and 37 weeks of age. Obese Zucker rats had more hepatic fat accumulation than their lean counterparts. Nevertheless, the obese rats had unaltered age-related level of hepatic oxidatively damaged DNA in terms of formamidopyrimidine DNA glycosylase (FPG) or human oxoguanine DNA glycosylase (hOGG1) sensitive sites as measured by the comet assay. There were decreasing levels of oxidatively damaged DNA with age in the liver of lean rats, which occurred concurrently with increased expression of Ogg1. The 37 week old lean rats also had higher expression level of Hmox1 and elevated levels of DNA strand breaks in the liver. Still, both strain of rats had increased protein level of HMOX-1 in the liver at 37 weeks. The external and lumen diameters of mesenteric arteries increased with age in obese Zucker rats with no change in media cross-sectional area, indicating outward re-modelling without hypertrophy of the vascular wall. There was increased maximal response to acetylcholine-mediated endothelium-dependent vasodilatation in both strains of rats. Collectively, the results indicate that obese Zucker rats only displayed a modest mesenteric vascular dysfunction, with no increase in hepatic oxidative stress-generated DNA damage despite substantial hepatic steatosis.",
author = "Mille L{\o}hr and Folkmann, {Janne Kj{\ae}rsgaard} and Majid Sheykhzade and Jensen, {Lars J{\o}rn} and Ali Kermanizadeh and Steffen Loft and Peter M{\o}ller",
year = "2015",
month = "3",
day = "4",
doi = "10.1371/journal.pone.0118773",
language = "English",
volume = "10",
journal = "P L o S One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "3",

}

RIS

TY - JOUR

T1 - Hepatic oxidative stress, genotoxicity and vascular dysfunction in lean or obese zucker rats

AU - Løhr, Mille

AU - Folkmann, Janne Kjærsgaard

AU - Sheykhzade, Majid

AU - Jensen, Lars Jørn

AU - Kermanizadeh, Ali

AU - Loft, Steffen

AU - Møller, Peter

PY - 2015/3/4

Y1 - 2015/3/4

N2 - Metabolic syndrome is associated with increased risk of cardiovascular disease, which could be related to oxidative stress. Here, we investigated the associations between hepatic oxidative stress and vascular function in pressurized mesenteric arteries from lean and obese Zucker rats at 14, 24 and 37 weeks of age. Obese Zucker rats had more hepatic fat accumulation than their lean counterparts. Nevertheless, the obese rats had unaltered age-related level of hepatic oxidatively damaged DNA in terms of formamidopyrimidine DNA glycosylase (FPG) or human oxoguanine DNA glycosylase (hOGG1) sensitive sites as measured by the comet assay. There were decreasing levels of oxidatively damaged DNA with age in the liver of lean rats, which occurred concurrently with increased expression of Ogg1. The 37 week old lean rats also had higher expression level of Hmox1 and elevated levels of DNA strand breaks in the liver. Still, both strain of rats had increased protein level of HMOX-1 in the liver at 37 weeks. The external and lumen diameters of mesenteric arteries increased with age in obese Zucker rats with no change in media cross-sectional area, indicating outward re-modelling without hypertrophy of the vascular wall. There was increased maximal response to acetylcholine-mediated endothelium-dependent vasodilatation in both strains of rats. Collectively, the results indicate that obese Zucker rats only displayed a modest mesenteric vascular dysfunction, with no increase in hepatic oxidative stress-generated DNA damage despite substantial hepatic steatosis.

AB - Metabolic syndrome is associated with increased risk of cardiovascular disease, which could be related to oxidative stress. Here, we investigated the associations between hepatic oxidative stress and vascular function in pressurized mesenteric arteries from lean and obese Zucker rats at 14, 24 and 37 weeks of age. Obese Zucker rats had more hepatic fat accumulation than their lean counterparts. Nevertheless, the obese rats had unaltered age-related level of hepatic oxidatively damaged DNA in terms of formamidopyrimidine DNA glycosylase (FPG) or human oxoguanine DNA glycosylase (hOGG1) sensitive sites as measured by the comet assay. There were decreasing levels of oxidatively damaged DNA with age in the liver of lean rats, which occurred concurrently with increased expression of Ogg1. The 37 week old lean rats also had higher expression level of Hmox1 and elevated levels of DNA strand breaks in the liver. Still, both strain of rats had increased protein level of HMOX-1 in the liver at 37 weeks. The external and lumen diameters of mesenteric arteries increased with age in obese Zucker rats with no change in media cross-sectional area, indicating outward re-modelling without hypertrophy of the vascular wall. There was increased maximal response to acetylcholine-mediated endothelium-dependent vasodilatation in both strains of rats. Collectively, the results indicate that obese Zucker rats only displayed a modest mesenteric vascular dysfunction, with no increase in hepatic oxidative stress-generated DNA damage despite substantial hepatic steatosis.

U2 - 10.1371/journal.pone.0118773

DO - 10.1371/journal.pone.0118773

M3 - Journal article

VL - 10

JO - P L o S One

JF - P L o S One

SN - 1932-6203

IS - 3

M1 - e0118773

ER -

ID: 132417534