Fat storage-inducing transmembrane protein 2 (FIT2) is less abundant in type 2 diabetes, and regulates triglyceride accumulation and insulin sensitivity in adipocytes

Research output: Contribution to journalJournal articleResearchpeer-review

Madhur Agrawal, Chia Rou Yeo, Asim Shabbir, Vanna Chhay, David L Silver, Faidon Magkos, Antonio Vidal-Puig, Sue-Anne Toh

Fat storage-inducing transmembrane protein 2 (FIT2) aids in partitioning of cellular triacylglycerol into lipid droplets. A genome-wide association study reported FITM2-R3H domain containing like-HNF4A locus to be associated with type 2 diabetes (T2DM) in East Asian populations. Mice with adipose tissue (AT)-specific FIT2 knockout exhibited lipodystrophic features, with reduced AT mass, insulin resistance, and greater inflammation in AT when fed a high-fat diet. The role of FIT2 in regulating human adipocyte function is not known. Here, we found FIT2 protein abundance is lower in subcutaneous and omental AT obtained from patients with T2DM compared with nondiabetic control subjects. Partial loss of FIT2 protein in primary human adipocytes attenuated their lipid storage capacity and induced insulin resistance. After palmitate treatment, triacylglycerol accumulation, insulin-induced Akt (Ser-473) phosphorylation, and insulin-stimulated glucose uptake were significantly reduced in FIT2 knockdown adipocytes compared with control cells. Gene expression of proinflammatory cytokines IL-18 and IL-6 and phosphorylation of the endoplasmic reticulum stress marker inositol-requiring enzyme 1α were greater in FIT2 knockdown adipocytes than in control cells. Our results show for the first time that FIT2 is associated with T2DM in humans and plays an integral role in maintaining metabolically healthy AT function.-Agrawal, M., Yeo, C. R., Shabbir, A., Chhay, V., Silver, D. L., Magkos, F., Vidal-Puig, A., Toh, S.-A. Fat storage-inducing transmembrane protein 2 (FIT2) is less abundant in type 2 diabetes, and regulates triglyceride accumulation and insulin sensitivity in adipocytes.

Original languageEnglish
JournalF A S E B Journal
Volume33
Issue number1
Pages (from-to)430-440
Number of pages11
ISSN0892-6638
DOIs
Publication statusPublished - 2019
Externally publishedYes

ID: 210872919