A mechanoelectrical mechanism for detection of sound envelopes in the hearing organ

Research output: Contribution to journalJournal articleResearchpeer-review


Alfred L Nuttall, Anthony J Ricci, George Burwood, James M Harte, Stefan Stenfelt, Per Cayé-Thomasen, Tianying Ren, Sripriya Ramamoorthy, Yuan Zhang, Teresa Wilson, Thomas Lunner, Brian C J Moore, Anders Fridberger

To understand speech, the slowly varying outline, or envelope, of the acoustic stimulus is used to distinguish words. A small amount of information about the envelope is sufficient for speech recognition, but the mechanism used by the auditory system to extract the envelope is not known. Several different theories have been proposed, including envelope detection by auditory nerve dendrites as well as various mechanisms involving the sensory hair cells. We used recordings from human and animal inner ears to show that the dominant mechanism for envelope detection is distortion introduced by mechanoelectrical transduction channels. This electrical distortion, which is not apparent in the sound-evoked vibrations of the basilar membrane, tracks the envelope, excites the auditory nerve, and transmits information about the shape of the envelope to the brain.

Original languageEnglish
Article number4175
JournalNature Communications
Number of pages11
Publication statusPublished - 2018

    Research areas

  • Acoustic Stimulation, Adult, Animals, Basilar Membrane/physiology, Biomechanical Phenomena, Cochlea/physiology, Electricity, Female, Hearing/physiology, Humans, Male, Middle Aged, Organ of Corti/physiology, Rats, Sound

Number of downloads are based on statistics from Google Scholar and www.ku.dk

No data available

ID: 216471107