On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis

Research output: Contribution to journalJournal articleResearchpeer-review

Katarina Holmborn, Judith Habicher, Zsolt Kasza, Anna S Eriksson, Beata Filipek-Gorniok, Sandeep Gopal, John R Couchman, Per E Ahlberg, Malgorzata Wiweger, Dorothe Spillmann, Johan Kreuger, Johan Ledin

The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation of the common proteoglycan linkage tetrasaccharide were analyzed along with ext2 and extl3 mutants, predicted to have defective HS polymerization. Notably, the effects on HS and CS biosynthesis in the respective mutant strains were shown to differ from what had been hypothesized. In uxs1 and b3gat3 mutant larvae, biosynthesis of CS was shown to be virtually abolished, whereas these mutants still were capable of synthesizing 50% of the HS produced in control larvae. extl3 and ext2 mutants on the other hand were shown to synthesize reduced amounts of hypersulfated HS. Further, extl3 mutants produced higher levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies in the single mutant strains, as well as in ext2;uxs1 double mutants, was conducted. A correlation between HS and CS production and phenotypes was found, such that impaired HS biosynthesis was shown to affect chondrocyte intercalation, whereas impaired CS biosynthesis inhibited formation of the extracellular matrix surrounding chondrocytes.
Original languageEnglish
JournalThe Journal of Biological Chemistry
Volume287
Issue number40
Pages (from-to)33905-16
Number of pages12
ISSN0021-9258
DOIs
Publication statusPublished - 28 Sep 2012

    Research areas

  • Alleles, Animals, Cartilage, Chondroitin Sulfates, Crosses, Genetic, Disease Progression, Female, Gene Expression Regulation, Developmental, Genotype, Heparitin Sulfate, Male, Microscopy, Confocal, Microscopy, Electron, Transmission, Models, Biological, Morphogenesis, Mutation, Pharynx, Zebrafish

ID: 49106541