Coarctation induces alterations in basement membranes in the cardiovascular system.

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Coarctation induces alterations in basement membranes in the cardiovascular system. / Lipke, D W; McCarthy, K J; Elton, T S; Arcot, S S; Oparil, S; Couchman, J R.

In: Hypertension, Vol. 22, No. 5, 1993, p. 743-53.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Lipke, DW, McCarthy, KJ, Elton, TS, Arcot, SS, Oparil, S & Couchman, JR 1993, 'Coarctation induces alterations in basement membranes in the cardiovascular system.', Hypertension, vol. 22, no. 5, pp. 743-53.

APA

Lipke, D. W., McCarthy, K. J., Elton, T. S., Arcot, S. S., Oparil, S., & Couchman, J. R. (1993). Coarctation induces alterations in basement membranes in the cardiovascular system. Hypertension, 22(5), 743-53.

Vancouver

Lipke DW, McCarthy KJ, Elton TS, Arcot SS, Oparil S, Couchman JR. Coarctation induces alterations in basement membranes in the cardiovascular system. Hypertension. 1993;22(5):743-53.

Author

Lipke, D W ; McCarthy, K J ; Elton, T S ; Arcot, S S ; Oparil, S ; Couchman, J R. / Coarctation induces alterations in basement membranes in the cardiovascular system. In: Hypertension. 1993 ; Vol. 22, No. 5. pp. 743-53.

Bibtex

@article{0fb3b2a0597a11dd8d9f000ea68e967b,
title = "Coarctation induces alterations in basement membranes in the cardiovascular system.",
abstract = "A coarctation hypertensive rat model was used to examine the effects of elevated blood pressure on basement membrane component synthesis by cardiac myocytes and aorta using immunohistochemistry and Northern blot analysis. Carotid arterial pressure increased immediately on coarctation, and left ventricular hypertrophy was maximal within 5 days. In immunohistochemical studies, fibronectin and laminin were increased and the basement membrane chondroitin sulfate proteoglycan decreased in both the subendothelial space and smooth muscle cell basement membranes of the aorta above the clip compared with controls, whereas only fibronectin was elevated in the aorta below the clip. No change in basement membrane staining intensity for the cardiac myocytes was observed. Alterations in steady-state mRNA levels for fibronectin and laminin in the aorta paralleled those observed by immunohistochemical analysis with regard to protein and tissue type affected as well as intensity of the changes. However, changes in mRNA levels (but not protein deposition) for perlecan and type IV collagen were also observed in aortas from hypertensive rats compared with controls. Increases in steady-state mRNA levels for all basement membrane components in the heart and vasculature peaked before maximal cardiac hypertrophy (5 days). These studies indicate that alterations in basement membrane component deposition in the hypertrophied vasculature occur at both transcriptional and translational levels and suggest that the cell attachment glycoproteins fibronectin and laminin may be important factors in the vascular response to elevated transmural pressure.",
author = "Lipke, {D W} and McCarthy, {K J} and Elton, {T S} and Arcot, {S S} and S Oparil and Couchman, {J R}",
note = "Keywords: Animals; Aorta, Abdominal; Aortic Coarctation; Basement Membrane; Blood Pressure; Body Weight; Carotid Arteries; Collagen; DNA Probes; Fibronectins; Heparan Sulfate Proteoglycans; Heparitin Sulfate; Hypertension; Laminin; Male; Muscle, Smooth, Vascular; Organ Size; Proteoglycans; Rats; Rats, Sprague-Dawley; Reference Values; Time Factors",
year = "1993",
language = "English",
volume = "22",
pages = "743--53",
journal = "Hypertension",
issn = "0194-911X",
publisher = "Lippincott Williams & Wilkins",
number = "5",

}

RIS

TY - JOUR

T1 - Coarctation induces alterations in basement membranes in the cardiovascular system.

AU - Lipke, D W

AU - McCarthy, K J

AU - Elton, T S

AU - Arcot, S S

AU - Oparil, S

AU - Couchman, J R

N1 - Keywords: Animals; Aorta, Abdominal; Aortic Coarctation; Basement Membrane; Blood Pressure; Body Weight; Carotid Arteries; Collagen; DNA Probes; Fibronectins; Heparan Sulfate Proteoglycans; Heparitin Sulfate; Hypertension; Laminin; Male; Muscle, Smooth, Vascular; Organ Size; Proteoglycans; Rats; Rats, Sprague-Dawley; Reference Values; Time Factors

PY - 1993

Y1 - 1993

N2 - A coarctation hypertensive rat model was used to examine the effects of elevated blood pressure on basement membrane component synthesis by cardiac myocytes and aorta using immunohistochemistry and Northern blot analysis. Carotid arterial pressure increased immediately on coarctation, and left ventricular hypertrophy was maximal within 5 days. In immunohistochemical studies, fibronectin and laminin were increased and the basement membrane chondroitin sulfate proteoglycan decreased in both the subendothelial space and smooth muscle cell basement membranes of the aorta above the clip compared with controls, whereas only fibronectin was elevated in the aorta below the clip. No change in basement membrane staining intensity for the cardiac myocytes was observed. Alterations in steady-state mRNA levels for fibronectin and laminin in the aorta paralleled those observed by immunohistochemical analysis with regard to protein and tissue type affected as well as intensity of the changes. However, changes in mRNA levels (but not protein deposition) for perlecan and type IV collagen were also observed in aortas from hypertensive rats compared with controls. Increases in steady-state mRNA levels for all basement membrane components in the heart and vasculature peaked before maximal cardiac hypertrophy (5 days). These studies indicate that alterations in basement membrane component deposition in the hypertrophied vasculature occur at both transcriptional and translational levels and suggest that the cell attachment glycoproteins fibronectin and laminin may be important factors in the vascular response to elevated transmural pressure.

AB - A coarctation hypertensive rat model was used to examine the effects of elevated blood pressure on basement membrane component synthesis by cardiac myocytes and aorta using immunohistochemistry and Northern blot analysis. Carotid arterial pressure increased immediately on coarctation, and left ventricular hypertrophy was maximal within 5 days. In immunohistochemical studies, fibronectin and laminin were increased and the basement membrane chondroitin sulfate proteoglycan decreased in both the subendothelial space and smooth muscle cell basement membranes of the aorta above the clip compared with controls, whereas only fibronectin was elevated in the aorta below the clip. No change in basement membrane staining intensity for the cardiac myocytes was observed. Alterations in steady-state mRNA levels for fibronectin and laminin in the aorta paralleled those observed by immunohistochemical analysis with regard to protein and tissue type affected as well as intensity of the changes. However, changes in mRNA levels (but not protein deposition) for perlecan and type IV collagen were also observed in aortas from hypertensive rats compared with controls. Increases in steady-state mRNA levels for all basement membrane components in the heart and vasculature peaked before maximal cardiac hypertrophy (5 days). These studies indicate that alterations in basement membrane component deposition in the hypertrophied vasculature occur at both transcriptional and translational levels and suggest that the cell attachment glycoproteins fibronectin and laminin may be important factors in the vascular response to elevated transmural pressure.

M3 - Journal article

C2 - 8225534

VL - 22

SP - 743

EP - 753

JO - Hypertension

JF - Hypertension

SN - 0194-911X

IS - 5

ER -

ID: 5165780