Semiconductor-ferromagnet-superconductor planar heterostructures for 1D topological superconductivity
Research output: Contribution to journal › Journal article › Research › peer-review
Documents
- s41535-022-00489-9
Final published version, 2.53 MB, PDF document
Hybrid structures of semiconducting (SM) nanowires, epitaxially grown superconductors (SC), and ferromagnetic-insulator (FI) layers have been explored experimentally and theoretically as alternative platforms for topological superconductivity at zero magnetic field. Here, we analyze a tripartite SM/FI/SC heterostructure but realized in a planar stacking geometry, where the thin FI layer acts as a spin-polarized barrier between the SM and the SC. We optimize the system's geometrical parameters using microscopic simulations, finding the range of FI thicknesses for which the hybrid system can be tuned into the topological regime. Within this range, and thanks to the vertical confinement provided by the stacking geometry, trivial and topological phases alternate regularly as the external gate is varied, displaying a hard topological gap that can reach half of the SC one. This is a significant improvement compared to setups using hexagonal nanowires, which show erratic topological regions with typically smaller and softer gaps. Our proposal provides a magnetic field-free planar design for quasi-one-dimensional topological superconductivity with attractive properties for experimental control and scalability.
Original language | English |
---|---|
Article number | 81 |
Journal | npj Quantum Materials |
Volume | 7 |
Issue number | 1 |
Number of pages | 8 |
DOIs | |
Publication status | Published - 18 Aug 2022 |
- ZERO-BIAS PEAKS, MAJORANA
Research areas
ID: 317937539