Proinflammatory cytokines perturb mouse and human pancreatic islet circadian rhythmicity and induce uncoordinated β-cell clock gene expression via nitric oxide, lysine deacetylases, and immunoproteasomal activity

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 5.5 MB, PDF document

Pancreatic β-cell-specific clock knockout mice develop β-cell oxidative-stress and failure, as well as glucose-intolerance. How inflammatory stress affects the cellular clock is un-der-investigated. Real-time recording of Per2:luciferase reporter activity in murine and human pancreatic islets demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β) length-ened the circadian period. qPCR-profiling of core clock gene expression in insulin-producing cells suggested that the combination of the proinflammatory cytokines IL-1β and interferon-γ (IFN-γ) caused pronounced but uncoordinated increases in mRNA levels of multiple core clock genes, in particular of reverse-erythroblastosis virus α (Rev-erbα), in a dose-and time-dependent manner. The REV-ERBα/β agonist SR9009, used to mimic cytokine-mediated Rev-erbα induction, reduced constitutive and cytokine-induced brain and muscle arnt-like 1 (Bmal1) mRNA levels in INS-1 cells as expected. SR9009 induced reactive oxygen species (ROS), reduced insulin-1/2 (Ins-1/2) mRNA and accumulated-and glucose-stimulated insulin secretion, reduced cell viability, and increased apoptosis levels, reminiscent of cytokine toxicity. In contrast, low (<5,0 μM) concentrations of SR9009 increased Ins-1 mRNA and accumulated insulin-secretion without affecting INS-1 cell viability, mirroring low-concentration IL-1β mediated β-cell stimulation. Inhibiting nitric oxide (NO) synthesis, the lysine deacetylase HDAC3 and the immunoproteasome reduced cyto-kine-mediated increases in clock gene expression. In conclusion, the cytokine-combination per-turbed the intrinsic clocks operative in mouse and human pancreatic islets and induced uncoordinated clock gene expression in INS-1 cells, the latter effect associated with NO, HDAC3, and immunoproteasome activity.

Original languageEnglish
Article number83
JournalInternational Journal of Molecular Sciences
Volume22
Issue number1
Pages (from-to)1-25
ISSN1661-6596
DOIs
Publication statusPublished - 2021

Bibliographical note

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

    Research areas

  • Chronobiology, Diabetes, Epigenetics, Immuno-metabolism, Nitric oxide synthase

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 290458290