Multilevel effects in quantum dot based parity-to-charge conversion of Majorana box qubits
Research output: Contribution to journal › Journal article › Research › peer-review
Standard
Multilevel effects in quantum dot based parity-to-charge conversion of Majorana box qubits. / Schulenborg, Jens; Burrello, Michele; Leijnse, Martin; Flensberg, Karsten.
In: Physical Review B, Vol. 103, No. 24, 245407, 03.06.2021.Research output: Contribution to journal › Journal article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex
}
RIS
TY - JOUR
T1 - Multilevel effects in quantum dot based parity-to-charge conversion of Majorana box qubits
AU - Schulenborg, Jens
AU - Burrello, Michele
AU - Leijnse, Martin
AU - Flensberg, Karsten
PY - 2021/6/3
Y1 - 2021/6/3
N2 - Quantum dot based parity-to-charge conversion is a promising method for reading out quantum information encoded nonlocally into pairs of Majorana zero modes. To obtain a sizable parity-to-charge visibility, it is crucial to tune the relative phase of the tunnel couplings between the dot and the Majorana modes appropriately. However, in the presence of multiple quasidegenerate dot orbitals, it is in general not experimentally feasible to tune all couplings individually. This paper shows that such configurations could make it difficult to avoid a destructive multiorbital interference effect that substantially reduces the readout visibility. We analyze this effect using a Lindblad quantum master equation. This exposes how the experimentally relevant system parameters enhance or suppress the visibility when strong charging energy, measurement dissipation, and, most importantly, multiorbital interference is accounted for. In particular, we find that an intermediate-time readout could mitigate some of the interference-related visibility reductions affecting the stationary limit.
AB - Quantum dot based parity-to-charge conversion is a promising method for reading out quantum information encoded nonlocally into pairs of Majorana zero modes. To obtain a sizable parity-to-charge visibility, it is crucial to tune the relative phase of the tunnel couplings between the dot and the Majorana modes appropriately. However, in the presence of multiple quasidegenerate dot orbitals, it is in general not experimentally feasible to tune all couplings individually. This paper shows that such configurations could make it difficult to avoid a destructive multiorbital interference effect that substantially reduces the readout visibility. We analyze this effect using a Lindblad quantum master equation. This exposes how the experimentally relevant system parameters enhance or suppress the visibility when strong charging energy, measurement dissipation, and, most importantly, multiorbital interference is accounted for. In particular, we find that an intermediate-time readout could mitigate some of the interference-related visibility reductions affecting the stationary limit.
KW - TOPOLOGICAL SUPERCONDUCTOR
KW - NANOWIRE
KW - INAS
KW - SPIN
KW - SIGNATURE
KW - FERMIONS
U2 - 10.1103/PhysRevB.103.245407
DO - 10.1103/PhysRevB.103.245407
M3 - Journal article
VL - 103
JO - Physical Review B
JF - Physical Review B
SN - 2469-9950
IS - 24
M1 - 245407
ER -
ID: 272510817