Vector Flow Imaging Compared with Digital Subtraction Angiography for Stenosis Assessment in the Superficial Femoral Artery - A Study of Vector Concentration, Velocity Ratio and Stenosis Degree Percentage

Research output: Contribution to journalJournal articleResearchpeer-review

Purpose: Stenosis of the superficial femoral artery (SFA) induces complex blood flow with increased velocities. Disease assessment is performed with Doppler ultrasound and digital subtraction angiography (DSA), but Doppler ultrasound is limited by angle dependency and DSA by ionizing radiation. An alternative is the vector flow imaging method based on transverse oscillation (TO), an angle-independent vector velocity technique using ultrasound. In this study, flow complexity and velocity measured with TO were compared with DSA for the assessment of stenosis in the SFA.

Materials and Methods: The vector concentration, a measure of flow complexity, and the velocity ratio obtained from the stenosis and a disease-free adjacent vessel segment, were estimated with TO in 11 patients with a total of 16 stenoses of the SFA. TO data were compared with the corresponding stenosis degree percentage obtained with DSA.

Results: The correlation between the vector concentration and DSA was very strong (R=0.93; p<0.001; 95% confidence interval (CI): 0.81-0.98), while only moderate for velocity ratio and DSA (R=0.50; p<0.07; 95% CI: 0.00-0.80). The correlation coefficients that were found were significantly different (p<0.005) without overlapping CI.

Conclusion: The study indicated that flow changes in the SFA induced by stenosis can be quantified with TO, and that stenosis grading may be improved by estimation of flow complexity instead of velocity ratio. TO is a potential diagnostic tool for the assessment of atherosclerosis and peripheral arterial disease.

Original languageEnglish
JournalUltrasound International Open
Issue number2
Pages (from-to)E53-E59
Number of pages7
Publication statusPublished - 2019

Number of downloads are based on statistics from Google Scholar and

No data available

ID: 232975056