The microbiome of captive hamadryas baboons

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

The microbiome of captive hamadryas baboons. / Li, Xuan Ji; Trivedi, Urvish; Brejnrod, Asker Daniel; Vestergaard, Gisle Alberg; Mortensen, Martin Steen; Bertelsen, Mads Frost; Sørensen, Søren Johannes.

In: BMC Animal Microbiome, Vol. 2, 25, 2020.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Li, XJ, Trivedi, U, Brejnrod, AD, Vestergaard, GA, Mortensen, MS, Bertelsen, MF & Sørensen, SJ 2020, 'The microbiome of captive hamadryas baboons', BMC Animal Microbiome, vol. 2, 25. https://doi.org/10.1186/s42523-020-00040-w

APA

Li, X. J., Trivedi, U., Brejnrod, A. D., Vestergaard, G. A., Mortensen, M. S., Bertelsen, M. F., & Sørensen, S. J. (2020). The microbiome of captive hamadryas baboons. BMC Animal Microbiome, 2, [25]. https://doi.org/10.1186/s42523-020-00040-w

Vancouver

Li XJ, Trivedi U, Brejnrod AD, Vestergaard GA, Mortensen MS, Bertelsen MF et al. The microbiome of captive hamadryas baboons. BMC Animal Microbiome. 2020;2. 25. https://doi.org/10.1186/s42523-020-00040-w

Author

Li, Xuan Ji ; Trivedi, Urvish ; Brejnrod, Asker Daniel ; Vestergaard, Gisle Alberg ; Mortensen, Martin Steen ; Bertelsen, Mads Frost ; Sørensen, Søren Johannes. / The microbiome of captive hamadryas baboons. In: BMC Animal Microbiome. 2020 ; Vol. 2.

Bibtex

@article{ff1828e68f89444b9277d6dbbc969686,
title = "The microbiome of captive hamadryas baboons",
abstract = "BackgroundThe hamadryas baboon (Papio hamadryas) is a highly social primate that lives in complex multilevel societies exhibiting a wide range of group behaviors akin to humans. In contrast to the widely studied human microbiome, there is a paucity of information on the host-associated microbiomes of nonhuman primates (NHPs). Here, our goal was to understand the microbial composition throughout different body sites of cohabiting baboons.ResultsWe analyzed 170 oral, oropharyngeal, cervical, uterine, vaginal, nasal and rectal samples from 16 hamadryas baboons via 16S rRNA gene sequencing. Additionally, raw Miseq sequencing data from 1041 comparable publicly available samples from the human oral cavity, gut and vagina were reanalyzed using the same pipeline. We compared the baboon and human microbiome of the oral cavity, gut and vagina, showing that the baboon microbiome is distinct from the human. Baboon cohabitants share similar microbial profiles in their cervix, uterus, vagina, and gut. The oral cavity, gut and vagina shared more bacterial amplicon sequence variants (ASVs) in group living baboons than in humans. The shared ASVs had significantly positive correlations between most body sites, suggesting a potential bacterial exchange throughout the body. No significant differences in gut microbiome composition were detected within the maternity line and between maternity lines, suggesting that the offspring gut microbiota is shaped primarily through bacterial exchange among cohabitants. Finally, Lactobacillus was not so predominant in baboon vagina as in the human vagina but was the most abundant genus in the baboon gut.ConclusionsThis study is the first to provide comprehensive analyses of the baboon microbiota across different body sites. We contrast this to human body sites and find substantially different microbiomes. This group of cohabitating baboons generally showed higher microbial diversity and remarkable similarities between body sites than were observed in humans. These data and findings from one group of baboons can form the basis of future microbiome studies in baboons and be used as a reference in research where the microbiome is expected to impact human modeling with baboons.",
author = "Li, {Xuan Ji} and Urvish Trivedi and Brejnrod, {Asker Daniel} and Vestergaard, {Gisle Alberg} and Mortensen, {Martin Steen} and Bertelsen, {Mads Frost} and S{\o}rensen, {S{\o}ren Johannes}",
year = "2020",
doi = "10.1186/s42523-020-00040-w",
language = "English",
volume = "2",
journal = "BMC Animal Microbiome",
issn = "2524-4671",
publisher = "BioMed Central",

}

RIS

TY - JOUR

T1 - The microbiome of captive hamadryas baboons

AU - Li, Xuan Ji

AU - Trivedi, Urvish

AU - Brejnrod, Asker Daniel

AU - Vestergaard, Gisle Alberg

AU - Mortensen, Martin Steen

AU - Bertelsen, Mads Frost

AU - Sørensen, Søren Johannes

PY - 2020

Y1 - 2020

N2 - BackgroundThe hamadryas baboon (Papio hamadryas) is a highly social primate that lives in complex multilevel societies exhibiting a wide range of group behaviors akin to humans. In contrast to the widely studied human microbiome, there is a paucity of information on the host-associated microbiomes of nonhuman primates (NHPs). Here, our goal was to understand the microbial composition throughout different body sites of cohabiting baboons.ResultsWe analyzed 170 oral, oropharyngeal, cervical, uterine, vaginal, nasal and rectal samples from 16 hamadryas baboons via 16S rRNA gene sequencing. Additionally, raw Miseq sequencing data from 1041 comparable publicly available samples from the human oral cavity, gut and vagina were reanalyzed using the same pipeline. We compared the baboon and human microbiome of the oral cavity, gut and vagina, showing that the baboon microbiome is distinct from the human. Baboon cohabitants share similar microbial profiles in their cervix, uterus, vagina, and gut. The oral cavity, gut and vagina shared more bacterial amplicon sequence variants (ASVs) in group living baboons than in humans. The shared ASVs had significantly positive correlations between most body sites, suggesting a potential bacterial exchange throughout the body. No significant differences in gut microbiome composition were detected within the maternity line and between maternity lines, suggesting that the offspring gut microbiota is shaped primarily through bacterial exchange among cohabitants. Finally, Lactobacillus was not so predominant in baboon vagina as in the human vagina but was the most abundant genus in the baboon gut.ConclusionsThis study is the first to provide comprehensive analyses of the baboon microbiota across different body sites. We contrast this to human body sites and find substantially different microbiomes. This group of cohabitating baboons generally showed higher microbial diversity and remarkable similarities between body sites than were observed in humans. These data and findings from one group of baboons can form the basis of future microbiome studies in baboons and be used as a reference in research where the microbiome is expected to impact human modeling with baboons.

AB - BackgroundThe hamadryas baboon (Papio hamadryas) is a highly social primate that lives in complex multilevel societies exhibiting a wide range of group behaviors akin to humans. In contrast to the widely studied human microbiome, there is a paucity of information on the host-associated microbiomes of nonhuman primates (NHPs). Here, our goal was to understand the microbial composition throughout different body sites of cohabiting baboons.ResultsWe analyzed 170 oral, oropharyngeal, cervical, uterine, vaginal, nasal and rectal samples from 16 hamadryas baboons via 16S rRNA gene sequencing. Additionally, raw Miseq sequencing data from 1041 comparable publicly available samples from the human oral cavity, gut and vagina were reanalyzed using the same pipeline. We compared the baboon and human microbiome of the oral cavity, gut and vagina, showing that the baboon microbiome is distinct from the human. Baboon cohabitants share similar microbial profiles in their cervix, uterus, vagina, and gut. The oral cavity, gut and vagina shared more bacterial amplicon sequence variants (ASVs) in group living baboons than in humans. The shared ASVs had significantly positive correlations between most body sites, suggesting a potential bacterial exchange throughout the body. No significant differences in gut microbiome composition were detected within the maternity line and between maternity lines, suggesting that the offspring gut microbiota is shaped primarily through bacterial exchange among cohabitants. Finally, Lactobacillus was not so predominant in baboon vagina as in the human vagina but was the most abundant genus in the baboon gut.ConclusionsThis study is the first to provide comprehensive analyses of the baboon microbiota across different body sites. We contrast this to human body sites and find substantially different microbiomes. This group of cohabitating baboons generally showed higher microbial diversity and remarkable similarities between body sites than were observed in humans. These data and findings from one group of baboons can form the basis of future microbiome studies in baboons and be used as a reference in research where the microbiome is expected to impact human modeling with baboons.

U2 - 10.1186/s42523-020-00040-w

DO - 10.1186/s42523-020-00040-w

M3 - Journal article

C2 - 33499948

VL - 2

JO - BMC Animal Microbiome

JF - BMC Animal Microbiome

SN - 2524-4671

M1 - 25

ER -

ID: 246824993