Systematic review of machine learning for diagnosis and prognosis in dermatology

Research output: Contribution to journalReviewResearchpeer-review

  • Kenneth Thomsen
  • Lars Iversen
  • Therese Louise Titlestad
  • Winther, Ole

Background: Software systems using artificial intelligence for medical purposes have been developed in recent years. The success of deep neural networks (DNN) in 2012 in the image recognition challenge ImageNet LSVRC 2010 fueled expectations of the potential for using such systems in dermatology. Objective: To evaluate the ways in which machine learning has been utilized in dermatology to date and provide an overview of the findings in current literature on the subject. Methods: We conducted a systematic review of existing literature, identifying the literature through a systematic search of the PubMed database. Two doctors assessed screening and eligibility with respect to pre-determined inclusion and exclusion criteria. Results: A total of 2175 publications were identified, and 64 publications were included. We identified eight major categories where machine learning tools were tested in dermatology. Most systems involved image recognition tools that were primarily aimed at binary classification of malignant melanoma (MM). Short system descriptions and results of all included systems are presented in tables. Conclusions: We present a complete overview of artificial intelligence implemented in dermatology. Impressive outcomes were reported in all of the identified eight categories, but head-to-head comparison proved difficult. The many areas of dermatology where we identified machine learning tools indicate the diversity of machine learning.

Original languageEnglish
JournalJournal of Dermatological Treatment
Issue number5
Pages (from-to)496-510
Publication statusPublished - 2020

    Research areas

  • artificial intelligence, computer assisted diagnostics, deep neural network, Dermatology

ID: 230793349