Supplementation of a lacto-fermented rapeseed-seaweed blend promotes gut microbial- and gut immune-modulation in weaner piglets

Research output: Contribution to journalJournal articleResearchpeer-review

Background The direct use of medical zinc oxide in feed will be abandoned after 2022 in Europe, leaving an urgent need for substitutes to prevent post-weaning disorders. Results This study investigated the effect of using rapeseed-seaweed blend (rapeseed meal added two brown macroalgae species Ascophylum nodosum and Saccharina latissima) fermented by lactobacilli (FRS) as feed ingredients in piglet weaning. From d 28 of life to d 85, the piglets were fed one of three different feeding regimens (n = 230 each) with inclusion of 0%, 2.5% and 5% FRS. In this period, no significant difference of piglet performance was found among the three groups. From a subset of piglets (n = 10 from each treatment), blood samples for hematology, biochemistry and immunoglobulin analysis, colon digesta for microbiome analysis, and jejunum and colon tissues for histopathological analyses were collected. The piglets fed with 2.5% FRS manifested alleviated intraepithelial and stromal lymphocytes infiltration in the gut, enhanced colon mucosa barrier relative to the 0% FRS group. The colon microbiota composition was determined using V3 and V1-V8 region 16S rRNA gene amplicon sequencing by Illumina NextSeq and Oxford Nanopore MinION, respectively. The two amplicon sequencing strategies showed high consistency between the detected bacteria. Both sequencing strategies indicated that inclusion of FRS reshaped the colon microbiome of weaned piglets with increased Shannon diversity. Prevotella stercorea was verified by both methods to be more abundant in the piglets supplied with FRS feed, and its abundance was positively correlated with colonic mucosa thickness but negatively correlated with blood concentrations of leucocytes and IgG. Conclusions FRS supplementation relieved the gut lymphocyte infiltration of the weaned piglets, improved the colon mucosa barrier with altered microbiota composition. Increasing the dietary inclusion of FRS from 2.5% to 5% did not lead to further improvements.

Original languageEnglish
Article number85
JournalJournal of Animal Science and Biotechnology
Volume12
Number of pages14
ISSN1674-9782
DOIs
Publication statusPublished - 2021

    Research areas

  • Amplicon sequencing, Colon microbiota, Fermented feed, Gut barrier, FAECALIBACTERIUM-PRAUSNITZII, DIETARY FIBER, LIQUID FEED, NUTRIENT DIGESTIBILITY, GROWTH-PERFORMANCE, BARRIER FUNCTION, BUTYRATE, HEALTH, MIXTURES, SAFETY

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 274873912