Prediction of pulp exposure before caries excavation using artificial intelligence: Deep learning-based image data versus standard dental radiographs

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 1.5 MB, PDF document

Objectives: The objective was to examine the effect of giving Artificial Intelligence (AI)-based radiographic information versus standard radiographic and clinical information to dental students on their pulp exposure prediction ability. Methods: 292 preoperative bitewing radiographs from patients previously treated were used. A multi-path neural network was implemented. The first path was a convolutional neural network (CNN) based on ResNet-50 architecture. The second path was a neural network trained on the distance between the pulp and lesion extracted from X-ray segmentations. Both paths merged and were followed by fully connected layers that predicted the probability of pulp exposure. A trial concerning the prediction of pulp exposure based on radiographic input and information on age and pain was conducted, involving 25 dental students. The data displayed was divided into 4 groups (G): GX-ray, GX-ray+clinical data, GX-ray+AI, GX-ray+clinical data+AI. Results: The results showed that AI surpassed the performance of students in all groups with an F1-score of 0.71 (P < 0.001). The students’ F1-score in GX-ray+AI and GX-ray+clinical data+AI with model prediction (0.61 and 0.61 respectively) was slightly higher than the F1-score in GX-ray and GX-ray+clinical data (0.58 and 0.59 respectively) with a borderline statistical significance of P = 0.054. Conclusions: Although the AI model had much better performance than all groups, the participants when given AI prediction, benefited only ‘slightly’. AI technology seems promising, but more explainable AI predictions along with a 'learning curve' are warranted.

Original languageEnglish
Article number104732
JournalJournal of Dentistry
Volume138
Number of pages7
ISSN0300-5712
DOIs
Publication statusPublished - Nov 2023

Bibliographical note

Publisher Copyright:
© 2023 The Authors

    Research areas

  • Artificial intelligence, Dental caries, Endodontics, Machine learning, Pulpitis

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 369927906