Muscle-nerve communication and the molecular assessment of human skeletal muscle denervation with aging

Research output: Contribution to journalJournal articlepeer-review

Muscle fiber denervation is a major contributor to the decline in physical function observed with aging. Denervation can occur through breakdown of the NMJ itself, affecting only that particular fiber, or through the death of a motoneuron, which can lead to a loss of all the muscle fibers in that motor unit. In this review we discuss the muscle-nerve relationship, where signaling from both the motor neuron and the muscle fiber is required for maximal preservation of neuromuscular function in old age. Physical activity is likely to be the most important single factor that can contribute to this preservation. Furthermore, we propose that inactivity is not an innocent bystander, but plays an active role in denervation through the production of signals hostile to neuron survival. Investigating denervation in human muscle tissue samples is challenging due to the shared protein profile of regenerating and denervated muscle fibers. In this review we provide a detailed overview of the key traits observed in immunohistochemical preparations of muscle biopsies from healthy young and elderly individuals. Overall, a combination of assessing tissue samples, circulating biomarkers, and electrophysiological assessments in humans will prove fruitful in the quest to gain more understanding of denervation of skeletal muscle. In addition, cell culture models represent a valuable tool in the search for key signaling factors exchanged between muscle and nerve, and which exercise has the capacity to alter.

Original languageEnglish
JournalAmerican journal of physiology. Cell physiology
Issue number2
Pages (from-to)C317-C329
Publication statusPublished - 2021

ID: 272637658