High metabolic substrate load induces mitochondrial dysfunction in rat skeletal muscle microvascular endothelial cells
Research output: Contribution to journal › Journal article › Research › peer-review
Documents
- Hansen et al_Physiological Reports_2021_Vol 9(14)_e14855
Final published version, 1.97 MB, PDF document
The influence of glucose and palmitic acid (PA) on mitochondrial respiration and emission of hydrogen peroxide (H2O2) was determined in skeletal muscle-derived microvascular endothelial cells. Measurements were assessed in intact and permeabilized (cells treated with 0.025% saponin) low passage endothelial cells with acute-or prolonged (3 days) incubation with regular (1.7 mM) or elevated (2.2 mM) PA concentrations and regular (5 mM) or elevated (11 mM) glucose concentrations. In intact cells, acute incubation with 1.7 mM PA alone or with 1.7 mM PA + 5 mM glucose (p < .001) led to a lower mitochondrial respiration (p < 0.01) and markedly higher H2O2/O2 emission (p < 0.05) than with 5 mM glucose alone. Prolonged incubation of intact cells with 1.7 mM PA +5 mM glucose led to 34% (p < 0.05) lower respiration and 2.5-fold higher H2O2/O2 emission (p < 0.01) than incubation with 5 mM glucose alone. Prolonged incubation of intact cells with elevated glucose led to 60% lower (p < 0.05) mitochondrial respiration and 4.6-fold higher H2O2/O2 production than incubation with 5 mM glucose in intact cells (p < 0.001). All effects observed in intact cells were present also in permeabilized cells (State 2). In conclusion, our results show that acute and prolonged lipid availability, as well as prolonged hyperglycemia, induces mitochondrial dysfunction as evidenced by lower mitochondrial respiration and enhanced H2O2/O2 emission. Elevated plasma substrate availability may lead to microvascular dysfunction in skeletal muscle by impairing endothelial mitochondrial function.
Original language | English |
---|---|
Article number | e14855 |
Journal | Physiological Reports |
Volume | 9 |
Issue number | 14 |
Number of pages | 17 |
ISSN | 2051-817X |
DOIs | |
Publication status | Published - 2021 |
Bibliographical note
© 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.
- Faculty of Science - Glucose, Mitochondria, Palmitic acid, Reactive oxygen species, Respirometry, Vascular
Research areas
Number of downloads are based on statistics from Google Scholar and www.ku.dk
ID: 275374323