Glucagon receptor signaling is not required for N-carbamoyl glutamate- And L-citrulline-induced ureagenesis in mice

Research output: Contribution to journalJournal articlepeer-review

Glucagon regulates the hepatic amino acid metabolism and increases ureagenesis. Ureagenesis is activated by N-acetylglutamate (NAG), formed via activation of N-acetylglutamate synthase (NAGS). With the aim to identify the steps whereby glucagon both acutely and chronically regulates ureagenesis, we investigated whether glucagon receptor-mediated activation of ureagenesis is required in a situation where NAGS activity and/or NAG levels are sufficient to activate the first step of the urea cycle in vivo. Female C57BL/6JRj mice treated with a glucagon receptor antagonist (GRA), glucagon receptor knockout (Gcgr-/-) mice, and wild-type (Gcgr+/+) littermates received an intraperitoneal injection of N-carbamoyl glutamate (Car; a stable variant of NAG), L-citrulline (Cit), Car and Cit (Car + Cit), or PBS. In separate experiments, Gcgr-/- and Gcgr+/+ mice were administered N-carbamoyl glutamate and L-citrulline (wCar + wCit) in the drinking water for 8 wk. Car, Cit, and Car + Cit significantly (P< 0.05) increased plasma urea concentrations, independently of pharmacological and genetic disruption of glucagon receptor signaling (P = 0.9). Car increased blood glucose concentrations equally in GRA- and vehicle-treated mice (P = 0.9), whereas the increase upon Car + Cit was impaired in GRA-treated mice (P = 0.008). Blood glucose concentrations remained unchanged in Gcgr-/- mice upon Car (P = 0.2) and Car + Cit (P = 0.9). Eight weeks administration of wCar + wCit did not change blood glucose (P > 0.2), plasma amino acid (P > 0.4), and urea concentrations (P > 0.3) or the area of glucagon-positive cells (P > 0.3) in Gcgr-/- and Gcgr+/+ mice. Our data suggest that glucagon-mediated activation of ureagenesis is not required when NAGS activity and/or NAG levels are sufficient to activate the first step of the urea cycle.

Original languageEnglish
JournalAmerican Journal of Physiology: Gastrointestinal and Liver Physiology
Volume318
Issue number5
Pages (from-to)G912-G927
ISSN0193-1857
DOIs
Publication statusPublished - 2020

ID: 244568056