DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis

Research output: Contribution to journalJournal articleResearchpeer-review

  • Jirina Bartkova
  • Zuzana Horejsí
  • Karen Koed
  • Alwin Krämer
  • Frederic Tort
  • Karsten Zieger
  • Per Guldberg
  • Maxwell Sehested
  • Jahn M Nesland
  • Lukas, Claudia
  • Torben Ørntoft
  • Lukas, Jiri
  • Jiri Bartek

During the evolution of cancer, the incipient tumour experiences 'oncogenic stress', which evokes a counter-response to eliminate such hazardous cells. However, the nature of this stress remains elusive, as does the inducible anti-cancer barrier that elicits growth arrest or cell death. Here we show that in clinical specimens from different stages of human tumours of the urinary bladder, breast, lung and colon, the early precursor lesions (but not normal tissues) commonly express markers of an activated DNA damage response. These include phosphorylated kinases ATM and Chk2, and phosphorylated histone H2AX and p53. Similar checkpoint responses were induced in cultured cells upon expression of different oncogenes that deregulate DNA replication. Together with genetic analyses, including a genome-wide assessment of allelic imbalances, our data indicate that early in tumorigenesis (before genomic instability and malignant conversion), human cells activate an ATR/ATM-regulated DNA damage response network that delays or prevents cancer. Mutations compromising this checkpoint, including defects in the ATM-Chk2-p53 pathway, might allow cell proliferation, survival, increased genomic instability and tumour progression.

Original languageEnglish
Issue number7035
Pages (from-to)864-70
Number of pages7
Publication statusPublished - 14 Apr 2005

    Research areas

  • Allelic Imbalance/genetics, Cell Cycle, Cell Cycle Proteins/genetics, Cell Line, Tumor, Cell Transformation, Neoplastic/genetics, Checkpoint Kinase 2, Cyclin E/genetics, DNA Damage/genetics, DNA-Binding Proteins/genetics, E2F Transcription Factors, Enzyme Activation, Genes, p53/genetics, Genomic Instability, Humans, Mutation/genetics, Neoplasms/enzymology, Oncogenes/genetics, Phosphorylation, Polymorphism, Single Nucleotide/genetics, Protein-Serine-Threonine Kinases/metabolism, Signal Transduction, Transcription Factors/genetics, Urinary Bladder Neoplasms/enzymology, cdc25 Phosphatases/genetics

ID: 246727912