Design, implementation, and operation of a rapid, robust named entity recognition web service

Research output: Contribution to journalJournal articlepeer-review

Most BioCreative tasks to date have focused on assessing the quality of text-mining annotations in terms of precision and recall. Interoperability, speed, and stability are, however, other important factors to consider for practical applications of text mining. For about a decade, we have run named entity recognition (NER) web services, which are designed to be efficient, implemented using a multi-threaded queueing system to robustly handle many simultaneous requests, and hosted at a supercomputer facility. To participate in this new task, we extended the existing NER tagging service with support for the BeCalm API. The tagger suffered no downtime during the challenge and, as in earlier tests, proved to be highly efficient, consistently processing requests of 5000 abstracts in less than half a minute. In fact, the majority of this time was spent not on the NER task but rather on retrieving the document texts from the challenge servers. The latter was found to be the main bottleneck even when hosting a copy of the tagging service on a Raspberry Pi 3, showing that local document storage or caching would be desirable features to include in future revisions of the API standard.

Original languageEnglish
Article number19
JournalJournal of Cheminformatics
Number of pages6
Publication statusPublished - 2019

Number of downloads are based on statistics from Google Scholar and

No data available

ID: 214827358