Biomechanical Variability and Usability of a Novel Customizable Fracture Fixation Technique

Research output: Contribution to journalJournal articleResearchpeer-review


  • Fulltext

    Final published version, 2.59 MB, PDF document

A novel in situ customizable osteosynthesis technique, Bonevolent™ AdhFix, demonstrates promising biomechanical properties under the expertise of a single trained operator. This study assesses inter- and intra-surgeon biomechanical variability and usability of the AdhFix osteosynthesis platform. Six surgeons conducted ten osteosyntheses on a synthetic bone fracture model after reviewing an instruction manual and completing one supervised osteosynthesis. Samples underwent 4-point bending tests at a quasi-static loading rate, and the maximum bending moment (BM), bending stiffness (BS), and AdhFix cross-sectional area (CSA: mm²) were evaluated. All constructs exhibited a consistent appearance and were suitable for biomechanical testing. The mean BM was 2.64 ± 0.57 Nm, and the mean BS was 4.35 ± 0.44 Nm/mm. Statistically significant differences were observed among the six surgeons in BM (p < 0.001) and BS (p = 0.004). Throughout ten trials, only one surgeon demonstrated a significant improvement in BM (p < 0.025), and another showed a significant improvement in BS (p < 0.01). A larger CSA corresponded to a statistically significantly higher value for BM (p < 0.001) but not for BS (p = 0.594). In conclusion, this study found consistent biomechanical stability both across and within the surgeons included, suggesting that the AdhFix osteosynthesis platform can be learned and applied with minimal training and, therefore, might be a clinically viable fracture fixation technique. The variability in BM and BS observed is not expected to have a clinical impact, but future clinical studies are warranted.

Original languageEnglish
Article number1146
Issue number10
Number of pages11
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

    Research areas

  • in situ customizable osteosynthesis, patient-specific osteosynthesis, surgical skills, usability, variability

ID: 372245243