Bacterial Chromosome Replication and DNA Repair During the Stringent Response

Research output: Contribution to journalReviewResearchpeer-review

Documents

The stringent response regulates bacterial growth rate and is important for cell survival under changing environmental conditions. The effect of the stringent response is pleiotropic, affecting almost all biological processes in the cell including transcriptional downregulation of genes involved in stable RNA synthesis, DNA replication, and metabolic pathways, as well as the upregulation of stress-related genes. In this Review, we discuss how the stringent response affects chromosome replication and DNA repair activities in bacteria. Importantly, we address how accumulation of (p)ppGpp during the stringent response shuts down chromosome replication using highly different strategies in the evolutionary distant Gram-negativeEscherichia coliand Gram-positiveBacillus subtilis.Interestingly, (p)ppGpp-mediated replication inhibition occurs downstream of the origin inB. subtilis, whereas replication inhibition inE. colitakes place at the initiation level, suggesting that stringent cell cycle arrest acts at different phases of the replication cycle betweenE. coliandB. subtilis. Furthermore, we address the role of (p)ppGpp in facilitating DNA repair activities and cell survival during exposure to UV and other DNA damaging agents. In particular, (p)ppGpp seems to stimulate the efficiency of nucleotide excision repair (NER)-dependent repair of DNA lesions. Finally, we discuss whether (p)ppGpp-mediated cell survival during DNA damage is related to the ability of (p)ppGpp accumulation to inhibit chromosome replication.

Original languageEnglish
Article number582113
JournalFrontiers in Microbiology
Volume11
Number of pages9
ISSN1664-302X
DOIs
Publication statusPublished - 2020

    Research areas

  • (p)ppGpp, DNA replication, DNA repair, stringent response, genome stability, Escherichia coli, Bacillus subtilis, NUCLEOTIDE EXCISION-REPAIR, ESCHERICHIA-COLI, BACILLUS-SUBTILIS, RNA-POLYMERASE, MIOC TRANSCRIPTION, GROWTH-RATE, CELL CYCLE, PPGPP, (P)PPGPP, INITIATION

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 249478536