Auto-segmentation of Hip Joints Using MultiPlanar UNet with Transfer Learning
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
Documents
- Fulltext
Accepted author manuscript, 2.81 MB, PDF document
Accurate geometry representation is essential in developing finite element models. Although generally good, deep-learning segmentation approaches with only few data have difficulties in accurately segmenting fine features, e.g., gaps and thin structures. Subsequently, segmented geometries need labor-intensive manual modifications to reach a quality where they can be used for simulation purposes. We propose a strategy that uses transfer learning to reuse datasets with poor segmentation combined with an interactive learning step where fine-tuning of the data results in anatomically accurate segmentations suitable for simulations. We use a modified MultiPlanar UNet that is pre-trained using inferior hip joint segmentation combined with a dedicated loss function to learn the gap regions and post-processing to correct tiny inaccuracies on symmetric classes due to rotational invariance. We demonstrate this robust yet conceptually simple approach applied with clinically validated results on publicly available computed tomography scans of hip joints. Code and resulting 3D models are available at: https://github.com/MICCAI2022-155/AuToSeg.
Original language | English |
---|---|
Title of host publication | Medical Image Learning with Limited and Noisy Data : First International Workshop, MILLanD 2022 Held in Conjunction with MICCAI 2022 Singapore, September 22, 2022 Proceedings |
Editors | Ghada Zamzmi, Sameer Antani, Sivaramakrishnan Rajaraman, Zhiyun Xue, Ulas Bagci, Marius George Linguraru |
Number of pages | 10 |
Publisher | Springer Science and Business Media Deutschland GmbH |
Publication date | 2022 |
Pages | 153-162 |
ISBN (Print) | 978-3-031-16759-1 |
ISBN (Electronic) | 978-3-031-16760-7 |
DOIs | |
Publication status | Published - 2022 |
Event | 1st International Workshop on Medical Image Learning with Limited and Noisy Data, MILLanD 2022, held in conjunction with 25th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2022 - Singapore, Singapore Duration: 22 Sep 2022 → 22 Sep 2022 |
Conference
Conference | 1st International Workshop on Medical Image Learning with Limited and Noisy Data, MILLanD 2022, held in conjunction with 25th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2022 |
---|---|
Land | Singapore |
By | Singapore |
Periode | 22/09/2022 → 22/09/2022 |
Series | Medical Image Learning with Limited and Noisy Data |
---|---|
Volume | 13559 |
ISSN | 0302-9743 |
Bibliographical note
Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
- Finite element modeling, Segmentation, Transfer learning
Research areas
Number of downloads are based on statistics from Google Scholar and www.ku.dk
ID: 320498297