Atmospheric chemistry of Z- and E-CF3CH=CHCF3

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Atmospheric chemistry of Z- and E-CF3CH=CHCF3. / Østerstrøm, Freja From; Andersen, Simone Thirstrup; Sølling, Theis Ivan; Nielsen, Ole John; Andersen, Mads Peter Sulbæk.

In: Physical Chemistry Chemical Physics, Vol. 19, No. 1, 2017, p. 735-750.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Østerstrøm, FF, Andersen, ST, Sølling, TI, Nielsen, OJ & Andersen, MPS 2017, 'Atmospheric chemistry of Z- and E-CF3CH=CHCF3', Physical Chemistry Chemical Physics, vol. 19, no. 1, pp. 735-750. https://doi.org/10.1039/c6cp07234h

APA

Østerstrøm, F. F., Andersen, S. T., Sølling, T. I., Nielsen, O. J., & Andersen, M. P. S. (2017). Atmospheric chemistry of Z- and E-CF3CH=CHCF3. Physical Chemistry Chemical Physics, 19(1), 735-750. https://doi.org/10.1039/c6cp07234h

Vancouver

Østerstrøm FF, Andersen ST, Sølling TI, Nielsen OJ, Andersen MPS. Atmospheric chemistry of Z- and E-CF3CH=CHCF3. Physical Chemistry Chemical Physics. 2017;19(1):735-750. https://doi.org/10.1039/c6cp07234h

Author

Østerstrøm, Freja From ; Andersen, Simone Thirstrup ; Sølling, Theis Ivan ; Nielsen, Ole John ; Andersen, Mads Peter Sulbæk. / Atmospheric chemistry of Z- and E-CF3CH=CHCF3. In: Physical Chemistry Chemical Physics. 2017 ; Vol. 19, No. 1. pp. 735-750.

Bibtex

@article{7b34aef39647491fbbc306d44ce5a23d,
title = "Atmospheric chemistry of Z- and E-CF3CH=CHCF3",
abstract = "The atmospheric fates of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 have been studied, investigating the kinetics and the products of the reactions of the two compounds with Cl atoms, OH radicals, OD radicals, and O3. FTIR smog chamber experiments measured: k(Cl + Z-CF3CH[double bond, length as m-dash]CHCF3) = (2.59 ± 0.47) × 10−11, k(Cl + E-CF3CH[double bond, length as m-dash]CHCF3) = (1.36 ± 0.27) × 10−11, k(OH + Z-CF3CH[double bond, length as m-dash]CHCF3) = (4.21 ± 0.62) × 10−13, k(OH + E-CF3CH[double bond, length as m-dash]CHCF3) = (1.72 ± 0.42) × 10−13, k(OD + Z-CF3CH[double bond, length as m-dash]CHCF3) = (6.94 ± 1.25) × 10−13, k(OD + E-CF3CH[double bond, length as m-dash]CHCF3) = (5.61 ± 0.98) × 10−13, k(O3 + Z-CF3CH[double bond, length as m-dash]CHCF3) = (6.25 ± 0.70) × 10−22, and k(O3 + E-CF3CH[double bond, length as m-dash]CHCF3) = (4.14 ± 0.42) × 10−22 cm3 molecule−1 s−1 in 700 Torr of air/N2/O2 diluents at 296 ± 2 K. E-CF3CH[double bond, length as m-dash]CHCF3 reacts with Cl atoms to give CF3CHClC(O)CF3 in a yield indistinguishable from 100%. Z-CF3CH[double bond, length as m-dash]CHCF3 reacts with Cl atoms to give (95 ± 10)% CF3CHClC(O)CF3 and (7 ± 1)% E-CF3CH[double bond, length as m-dash]CHCF3. CF3CHClC(O)CF3 reacts with Cl atoms to give the secondary product CF3C(O)Cl in a yield indistinguishable from 100%, with the observed co-products C(O)F2 and CF3O3CF3. The main atmospheric fate for Z- and E-CF3CH[double bond, length as m-dash]CHCF3 is reaction with OH radicals. The atmospheric lifetimes of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 are estimated as 27 and 67 days, respectively. IR absorption cross sections are reported and the global warming potentials (GWPs) of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 for the 100 year time horizon are calculated to be GWP100 = 2 and 7, respectively. This study provides a comprehensive description of the atmospheric fate and impact of Z- and E-CF3CH[double bond, length as m-dash]CHCF3",
author = "{\O}sterstr{\o}m, {Freja From} and Andersen, {Simone Thirstrup} and S{\o}lling, {Theis Ivan} and Nielsen, {Ole John} and Andersen, {Mads Peter Sulb{\ae}k}",
year = "2017",
doi = "10.1039/c6cp07234h",
language = "English",
volume = "19",
pages = "735--750",
journal = "Physical Chemistry Chemical Physics",
issn = "1463-9076",
publisher = "Royal Society of Chemistry",
number = "1",

}

RIS

TY - JOUR

T1 - Atmospheric chemistry of Z- and E-CF3CH=CHCF3

AU - Østerstrøm, Freja From

AU - Andersen, Simone Thirstrup

AU - Sølling, Theis Ivan

AU - Nielsen, Ole John

AU - Andersen, Mads Peter Sulbæk

PY - 2017

Y1 - 2017

N2 - The atmospheric fates of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 have been studied, investigating the kinetics and the products of the reactions of the two compounds with Cl atoms, OH radicals, OD radicals, and O3. FTIR smog chamber experiments measured: k(Cl + Z-CF3CH[double bond, length as m-dash]CHCF3) = (2.59 ± 0.47) × 10−11, k(Cl + E-CF3CH[double bond, length as m-dash]CHCF3) = (1.36 ± 0.27) × 10−11, k(OH + Z-CF3CH[double bond, length as m-dash]CHCF3) = (4.21 ± 0.62) × 10−13, k(OH + E-CF3CH[double bond, length as m-dash]CHCF3) = (1.72 ± 0.42) × 10−13, k(OD + Z-CF3CH[double bond, length as m-dash]CHCF3) = (6.94 ± 1.25) × 10−13, k(OD + E-CF3CH[double bond, length as m-dash]CHCF3) = (5.61 ± 0.98) × 10−13, k(O3 + Z-CF3CH[double bond, length as m-dash]CHCF3) = (6.25 ± 0.70) × 10−22, and k(O3 + E-CF3CH[double bond, length as m-dash]CHCF3) = (4.14 ± 0.42) × 10−22 cm3 molecule−1 s−1 in 700 Torr of air/N2/O2 diluents at 296 ± 2 K. E-CF3CH[double bond, length as m-dash]CHCF3 reacts with Cl atoms to give CF3CHClC(O)CF3 in a yield indistinguishable from 100%. Z-CF3CH[double bond, length as m-dash]CHCF3 reacts with Cl atoms to give (95 ± 10)% CF3CHClC(O)CF3 and (7 ± 1)% E-CF3CH[double bond, length as m-dash]CHCF3. CF3CHClC(O)CF3 reacts with Cl atoms to give the secondary product CF3C(O)Cl in a yield indistinguishable from 100%, with the observed co-products C(O)F2 and CF3O3CF3. The main atmospheric fate for Z- and E-CF3CH[double bond, length as m-dash]CHCF3 is reaction with OH radicals. The atmospheric lifetimes of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 are estimated as 27 and 67 days, respectively. IR absorption cross sections are reported and the global warming potentials (GWPs) of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 for the 100 year time horizon are calculated to be GWP100 = 2 and 7, respectively. This study provides a comprehensive description of the atmospheric fate and impact of Z- and E-CF3CH[double bond, length as m-dash]CHCF3

AB - The atmospheric fates of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 have been studied, investigating the kinetics and the products of the reactions of the two compounds with Cl atoms, OH radicals, OD radicals, and O3. FTIR smog chamber experiments measured: k(Cl + Z-CF3CH[double bond, length as m-dash]CHCF3) = (2.59 ± 0.47) × 10−11, k(Cl + E-CF3CH[double bond, length as m-dash]CHCF3) = (1.36 ± 0.27) × 10−11, k(OH + Z-CF3CH[double bond, length as m-dash]CHCF3) = (4.21 ± 0.62) × 10−13, k(OH + E-CF3CH[double bond, length as m-dash]CHCF3) = (1.72 ± 0.42) × 10−13, k(OD + Z-CF3CH[double bond, length as m-dash]CHCF3) = (6.94 ± 1.25) × 10−13, k(OD + E-CF3CH[double bond, length as m-dash]CHCF3) = (5.61 ± 0.98) × 10−13, k(O3 + Z-CF3CH[double bond, length as m-dash]CHCF3) = (6.25 ± 0.70) × 10−22, and k(O3 + E-CF3CH[double bond, length as m-dash]CHCF3) = (4.14 ± 0.42) × 10−22 cm3 molecule−1 s−1 in 700 Torr of air/N2/O2 diluents at 296 ± 2 K. E-CF3CH[double bond, length as m-dash]CHCF3 reacts with Cl atoms to give CF3CHClC(O)CF3 in a yield indistinguishable from 100%. Z-CF3CH[double bond, length as m-dash]CHCF3 reacts with Cl atoms to give (95 ± 10)% CF3CHClC(O)CF3 and (7 ± 1)% E-CF3CH[double bond, length as m-dash]CHCF3. CF3CHClC(O)CF3 reacts with Cl atoms to give the secondary product CF3C(O)Cl in a yield indistinguishable from 100%, with the observed co-products C(O)F2 and CF3O3CF3. The main atmospheric fate for Z- and E-CF3CH[double bond, length as m-dash]CHCF3 is reaction with OH radicals. The atmospheric lifetimes of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 are estimated as 27 and 67 days, respectively. IR absorption cross sections are reported and the global warming potentials (GWPs) of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 for the 100 year time horizon are calculated to be GWP100 = 2 and 7, respectively. This study provides a comprehensive description of the atmospheric fate and impact of Z- and E-CF3CH[double bond, length as m-dash]CHCF3

U2 - 10.1039/c6cp07234h

DO - 10.1039/c6cp07234h

M3 - Journal article

C2 - 27929159

VL - 19

SP - 735

EP - 750

JO - Physical Chemistry Chemical Physics

JF - Physical Chemistry Chemical Physics

SN - 1463-9076

IS - 1

ER -

ID: 176367907