Assessment of anaesthetic depth by clustering analysis and autoregressive modelling of electroencephalograms.

Research output: Contribution to journalJournal articleResearchpeer-review

The brain activity electroencephalogram (EEG) was recorded from 30 healthy women scheduled for hysterectomy. The patients were anaesthetized with isoflurane, halothane or etomidate/fentanyl. A multiparametric method was used for extraction of amplitude and frequency information from the EEG. The method applied autoregressive modelling of the signal, segmented in 2 s fixed intervals. The features from the EEG segments were used for learning and for classification. The learning process was unsupervised and hierarchical clustering analysis was used to construct a learning set of EEG amplitude-frequency patterns for each of the three anaesthetic drugs. These EEG patterns were assigned to a colour code corresponding to similar clinical states. A common learning set could be used for all patients anaesthetized with the same drug. The classification process could be performed on-line and the results were displayed in a class probability histogram. This histogram reflected in all patients the depth of anaesthesia, when the concentration of the anaesthetic agent was adjusted either based on clinical signs or according to the protocol. This uniform display, where colours in a class probability histogram indicate the depth of anaesthesia, may in the future serve as on-line advice for the administration of anaesthetics. A comparison of multiparametric with single parametric methods, based on calculation of median, spectral edge and peak frequencies, questions the reliability of the single parametric methods in monitoring anaesthetic depth.
Original languageEnglish
JournalComputer Methods and Programs in Biomedicine
Volume34
Issue number2-3
Pages (from-to)125-38
Number of pages13
ISSN0169-2607
Publication statusPublished - 1991

Bibliographical note

Keywords: Adult; Anesthesia, General; Cluster Analysis; Computer Simulation; Discriminant Analysis; Electroencephalography; Etomidate; Female; Fentanyl; Halothane; Humans; Hysterectomy; Isoflurane; Middle Aged; Models, Biological; Monitoring, Physiologic; Nitrous Oxide; Online Systems; Reference Values; Signal Processing, Computer-Assisted; User-Computer Interface

ID: 5941978