A RT-qPCR system using a degenerate probe for specific identification and differentiation of SARS-CoV-2 Omicron (B.1.1.529) variants of concern
Research output: Contribution to journal › Journal article › Research › peer-review
Documents
- Fulltext
Final published version, 1.12 MB, PDF document
Fast surveillance strategies are needed to control the spread of new emerging SARS-CoV-2 variants and gain time for evaluation of their pathogenic potential. This was essential for the Omicron variant (B.1.1.529) that replaced the Delta variant (B.1.617.2) and is currently the dominant SARS-CoV-2 variant circulating worldwide. RT-qPCR strategies complement whole genome sequencing, especially in resource lean countries, but mutations in the targeting primer and probe sequences of new emerging variants can lead to a failure of the existing RT-qPCRs. Here, we introduced an RT-qPCR platform for detecting the Delta- and the Omicron variant simultaneously using a degenerate probe targeting the key ΔH69/V70 mutation in the spike protein. By inclusion of the L452R mutation into the RT-qPCR platform, we could detect not only the Delta and the Omicron variants, but also the Omicron sub-lineages BA.1, BA.2 and BA.4/BA.5. The RT-qPCR platform was validated in small- and large-scale. It can easily be incorporated for continued monitoring of Omicron sub-lineages, and offers a fast adaption strategy of existing RT-qPCRs to detect new emerging SARS-CoV-2 variants using degenerate probes.
Original language | English |
---|---|
Article number | e0274889 |
Journal | PLoS ONE |
Volume | 17 |
Issue number | 10 |
ISSN | 1932-6203 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Publisher Copyright:
© 2022 Jessen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
ID: 327136121