Martin Lillholm
Professor
Machine Learning
Universitetsparken 1
2100 København Ø
ORCID: 0000-0002-1402-6899
1 - 4 out of 4Page size: 100
Feature-based image analysis
Lillholm, Martin, Nielsen, Mads & Griffin, L. D., 2003, In: International Journal of Computer Vision. 52, 2, p. 73-95 23 p.Research output: Contribution to journal › Journal article › peer-review
Gaussian scale space from insufficient image information
Loog, M., Lillholm, Martin, Nielsen, M. & Viergever, M. A., 2003, Scale Space Methods in Computer Vision: 4th International Conference, Scale Space 2003 Isle of Skye, UK, June 10–12, 2003 Proceedings. Griffin, L. D. & Lillholm, M. (eds.). Springer, p. 757-769 (Lecture notes in computer science, Vol. 2695/2003).Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
Mode estimation using pessimistic scale space tracking
Griffin, L. D. & Lillholm, Martin, 2003, Scale Space Methods in Computer Vision: 4th International Conference, Scale Space 2003 Isle of Skye, UK, June 10–12, 2003 Proceedings. Griffin, L. D. & Lillholm, M. (eds.). Springer, p. 266-280 15 p. (Lecture notes in computer science, Vol. 2695).Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
Scale Space Methods in Computer Vision: 4th International Conference, Scale-Space 2003, Isle of Skye, UK, June 10-12, 2003, Proceedings
Griffin, L. D. (ed.) & Lillholm, Martin (ed.), 2003, Springer. (Lecture notes in computer science, Vol. 2695).Research output: Book/Report › Book › Research › peer-review
ID: 152298477
Most downloads
-
1593
downloads
Mammographic texture resemblance generalizes as an independent risk factor for breast cancer
Research output: Contribution to journal › Journal article › peer-review
Published -
593
downloads
Mammographic density and structural features can individually and jointly contribute to breast cancer risk assessment in mammography screening: a case-control study
Research output: Contribution to journal › Journal article › peer-review
Published -
319
downloads
Automatic segmentation of high-and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative
Research output: Contribution to journal › Journal article › peer-review
Published