Martin Lillholm
Professor
Machine Learning
Universitetsparken 1
2100 København Ø
A category system on the shape index descriptor of local image structure induced by natural image statistics
Lillholm, Martin & Griffin, L. D., 2006, In: Perception. 35, Supplement, p. 48-49 2 p.Research output: Contribution to journal › Conference abstract in journal › Research
- Published
A framework for optimizing measurement weight maps to minimize the required sample size
Qazi, A. A., Jørgensen, D. R., Lillholm, Martin, Loog, M., Nielsen, Mads & Dam, Erik Bjørnager, 2010, In: Medical Image Analysis. 14, 3, p. 255-264 10 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
A novel OA efficacy marker: cartilage activity
Jørgensen, D. R., Lillholm, Martin & Dam, E. B., 2013, In: Osteoarthritis and Cartilage. 21, Supplement, p. S21-S22 2 p., 28.Research output: Contribution to journal › Conference abstract in journal › Research
- Published
A unifying framework for automatic and semi-automatic segmentation of vertebrae from radiographs using sample-driven active shape models
Mysling, P., Petersen, P. K., Nielsen, Mads & Lillholm, Martin, 2013, In: Machine Vision & Applications. 24, 7, p. 1421–1434 14 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Alzheimer's disease diagnostic performance of a multi-atlas hippocampal segmentation method using the harmonized hippocampal protocol
Anker, C., Sørensen, L., Pai, A. S. U., Lyksborg, M., Lillholm, Martin, Conradsen, K., Larsen, R. & Nielsen, Mads, 2014. 1 p.Research output: Contribution to conference › Conference abstract for conference › Research › peer-review
- Published
An Artificial Intelligence–based Mammography Screening Protocol for Breast Cancer: Outcome and Radiologist Workload
Lauritzen, Andreas, Rodríguez-Ruiz, A., von Euler-Chelpin, My Catarina, Lynge, Elsebeth, Vejborg, I., Nielsen, Mads, Karssemeijer, N. & Lillholm, Martin, 2022, In: Radiology. 304, 1, p. 41-49Research output: Contribution to journal › Journal article › Research › peer-review
- Published
An evaluation of a novel technique for fully automatic synovitis quantification from pre- and post-contrast wrist MRI
Mysling, P., Dam, E., Zaim, S., Genant, H., Fuerst, T. & Lillholm, Martin, 2012, In: Annals of the Rheumatic Diseases. 71, Supplement 3, p. 303-304 2 p., THU0439.Research output: Contribution to journal › Conference abstract in journal › Research › peer-review
- Published
Assessing Breast Cancer Risk by Combining AI for Lesion Detection and Mammographic Texture
Lauritzen, Andreas, von Euler-Chelpin, My Catarina, Lynge, Elsebeth, Vejborg, I., Nielsen, Mads, Karssemeijer, N. & Lillholm, Martin, 2023, In: Radiology. 308, 2, 8 p., e230227.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Assessing breast cancer masking risk in full field digital mammography with automated texture analysis
Kallenberg, M. G. J., Lillholm, Martin, Diao, P., Holland, K., Karssemeijer, N., Igel, Christian & Nielsen, Mads, 2015, 7th International Workshop on Breast Densitometry and Cancer Risk Assessment (Non-CME). University of California, p. 109 1 p.Research output: Chapter in Book/Report/Conference proceeding › Conference abstract in proceedings › Research › peer-review
- Published
Assessing breast cancer masking risk with automated texture analysis in full field digital mammography
Kallenberg, M. G. J., Lillholm, Martin, Diao, P., Petersen, K., Holland, K., Karssemeijer, N., Igel, Christian & Nielsen, Mads, 2015, Breast Imaging and Interventional. Radiological Society of North America, Inc, p. 218 1 p.Research output: Chapter in Book/Report/Conference proceeding › Conference abstract in proceedings › Research › peer-review
- Published
Automated texture scoring for assessing breast cancer masking risk in full field digital mammography
Kallenberg, M. G. J., Petersen, P. K., Lillholm, Martin, Jørgensen, D. R., Diao, P., Holland, K., Karssemeijer, N., Igel, Christian & Nielsen, Mads, 2015, In: Insights into Imaging. 6, 1, Supplement, 1 p., B-0212.Research output: Contribution to journal › Conference abstract in journal › Research › peer-review
- Published
Automatic analysis of trabecular bone structure from knee MRI
Marques, J., Granlund, R., Lillholm, Martin, Pettersen, P. C. & Dam, E. B., 2012, In: Computers in Biology and Medicine. 42, 7, p. 735-742 8 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Automatic measurement of wrist synovitis from contrast-enhanced MRI: a registration-centered approach
Mysling, P., Darkner, Sune, Sporring, Jon, Dam, E. & Lillholm, Martin, 2013, Medical Imaging 2013: Image Processing. Ourselin, S. & Haynor, D. R. (eds.). SPIE - International Society for Optical Engineering, 6 p. 86692U. (Progress in Biomedical Optics and Imaging; No. 36, Vol. 14).Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
- Published
Automatic quantification of tibio-femoral contact area and congruity
Tummala, S., Nielsen, Mads, Lillholm, Martin, Christiansen, C. & Dam, Erik Bjørnager, 2012, In: I E E E Transactions on Medical Imaging. 31, 7, p. 1404-1412 9 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Automatic segmentation of high-and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative
Dam, Erik Bjørnager, Lillholm, Martin, Marques, J. & Nielsen, Mads, 2015, In: SPIE Journal of Medical Imaging. 2, 2, 13 p., 024001.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Automatic segmentation of vertebrae from radiographs: a sample-driven active shape model approach
Mysling, P., Petersen, P. K., Nielsen, Mads & Lillholm, Martin, 2011, Machine Learning in Medical Imaging: Second International Workshop, MLMI 2011, Held in Conjunction with MICCAI 2011, Toronto, Canada, September 18, 2011. Proceedings. Suzuki, K., Wang, F., Shen, D. & Yan, P. (eds.). Springer, p. 10-17 8 p. (Lecture notes in computer science, Vol. 7009).Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
Basic image features (BIFs) arising from approximate symmetry type
Griffin, L. D., Lillholm, Martin, Crosier, M. & van Sande, J., 2009, Scale Space and Variational Methods in Computer Vision: Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings. Tai, X-C., Mørken, K., Lysaker, M. & Lie, K-A. (eds.). Springer, p. 343-355 13 p. (Lecture notes in computer science, Vol. 5567).Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
- Published
Breast density and risk of breast cancer
Lynge, Elsebeth, Vejborg, I., Lillholm, Martin, Nielsen, Mads, Napolitano, George & von Euler-Chelpin, My Catarina, 2023, In: International Journal of Cancer. 152, 6, p. 1150-1158 9 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Breast tissue segmentation and mammographic risk scoring using deep learning
Petersen, P. K., Nielsen, Mads, Diao, P., Karssemeijer, N. & Lillholm, Martin, 2014, Breast imaging: 12th International Workshop, IWDM 2014, Gifu City, Japan, June 29 – July 2, 2014. Proceedings. Fujita, H., Hara, T. & Muramatsu, C. (eds.). Springer Science+Business Media, p. 88-94 7 p. (Lecture notes in computer science, Vol. 8539).Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
Brownian Images: a generic background model
Steenstrup Pedersen, Kim & Lillholm, Martin, 2004, Proceedings of the ECCV'04 Workshop on Statistical Learning in Computer Vision.Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
- Published
Change in mammographic density across birth cohorts of Dutch breast cancer screening participants
Napolitano, George, Lynge, Elsebeth, Lillholm, Martin, Vejborg, I. M. M., van Gils, C. H., Nielsen, Mads & Karssemeijer, N., 2019, In: International Journal of Cancer. 145, 11, p. 2954-2962 9 p.Research output: Contribution to journal › Journal article › Research › peer-review
Classifying local image symmetry using a co-localised family of linear filters
Griffin, L. D. & Lillholm, Martin, 2008, In: Perception. 37, Supplement, p. 122-122 1 p.Research output: Contribution to journal › Conference abstract in journal › Research
- Published
Computer analysis method for analyzing images involves applying algorithm to aligned images to extract quantitative estimate of difference in volume of object shown in second image by calculating change in volume of object
Pai, A. S. U., Sørensen, L., Dam, E., Lillholm, Martin & Nielsen, Mads, 2014, IPC No. A61B-005/00, Patent No. US2014357978-A1, 4 Dec 2014, Priority date 4 Jun 2013, Priority No. US909666Research output: Patent
- Published
Computer based method for determining the size of an objects in an image
Pai, A. S. U., Sørensen, L., Dam, E. B., Lillholm, Martin & Nielsen, Mads, 4 Dec 2014, Priority date 4 Dec 2014Research output: Patent
- Published
Cube propagation for focal brain atrophy estimation
Pai, A. S. U., Sørensen, L., Darkner, Sune, Mysling, P., Jørgensen, D. R., Dam, E. B., Lillholm, Martin, Oh, J., Chen, G., Suhy, J., Sporring, Jon & Nielsen, Mads, 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging. IEEE, p. 402-405 4 p.Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
- Published
Deformation-based atrophy computation by surface propagation and its application to Alzheimer’s disease
Pai, A. S. U., Sporring, Jon, Darkner, Sune, Dam, Erik Bjørnager, Lillholm, Martin, Jørgensen, D., Oh, J., Chen, G., Suhy, J., Sørensen, L. & Nielsen, Mads, 2016, In: SPIE Journal of Medical Imaging. 3, 1, 11 p., 014005.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Dementia diagnosis using MRI cortical thickness, shape, texture, and volumetry
Sørensen, L., Pai, A. S. U., Anker, C., Balas, I., Lillholm, Martin, Igel, Christian & Nielsen, Mads, 2014, MICCAI 2014 Workshop Proceedings: Challenge on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data. Bron, E. E., Smits, M., van Swieten, J. C., Niessen, W. J. & Klein, S. (eds.). Erasmus Universiteit Rotterdam, p. 111-118 8 p.Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
- Published
Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients
Jimenez-Solem, E., Petersen, Tonny Studsgaard, Hansen, C., Hansen, C., Lioma, Christina, Igel, Christian, Boomsma, Wouter, Krause, Oswin, Lorenzen, S., Selvan, Raghav, Petersen, Janne, Nyeland, M. E., Ankarfeldt, Mikkel Zöllner, Virenfeldt, G. M., Winther-Jensen, M., Linneberg, Allan René, Mehdipour Ghazi, Mostafa, Detlefsen, N., Lauritzen, Andreas, Smith, Abraham George, de Bruijne, Marleen, Ibragimov, Bulat, Petersen, Jens, Lillholm, Martin, Middleton, Jon Anthony, Mogensen, S. H., Thorsen-Meyer, H., Perner, Anders, Helleberg, M., Kaas-Hansen, Benjamin Skov, Bonde, M., Bonde, A., Pai, A., Nielsen, Mads & Sillesen, Martin Hylleholt, 2021, In: Scientific Reports. 11, 1, 12 p., 3246.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI
Marques, J., Genant, H. K., Lillholm, Martin & Dam, Erik Bjørnager, 2013, In: Magnetic Resonance in Medicine. 70, 2, p. 568-575 8 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Differential diagnosis of mild cognitive impairment and Alzheimer’s disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry
Sørensen, L., Igel, Christian, Pai, A. S. U., Balas, I., Anker, C., Lillholm, Martin & Nielsen, Mads, 2017, In: NeuroImage: Clinical. 13, p. 470-482 13 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Evaluation of WBAA with registration-based cube propagation for brain atrophy quantification
Lillholm, Martin, Pai, A. S. U., Sørensen, L., Nielsen, Mads, Sporring, Jon, Darkner, Sune & Dam, E., 2013. 1 p.Research output: Contribution to conference › Conference abstract for conference › Research › peer-review
- Published
Evaluation of a novel approach for automatic delineation of vertebral contours in radiographs
Mysling, P., Petersen, P. K., Nielsen, Mads & Lillholm, Martin, 2012, In: Osteoporosis International. 23, Supplement 2, p. S250-S250 1 p., P439.Research output: Contribution to journal › Conference abstract in journal › Research
- Published
Eye movements in gaze interaction
Møllenbach, E., Paulin Hansen, J. & Lillholm, Martin, 2013, In: Journal of Eye Movement Research. 6, 2, p. 1-15 15 p., 1.Research output: Contribution to journal › Journal article › Research › peer-review
Feature category systems for 2nd order local image structure induced by natural image statistics and otherwise
Griffin, L. D. & Lillholm, Martin, 2007, Human Vision and Electronic Imaging XII . Rogowitz, B. E., Pappas, T. N. & Daly, S. J. (eds.). SPIE - International Society for Optical Engineering, 11 p. 649209. (Proceedings of S P I E - International Society for Optical Engineering, Vol. 6492).Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
Feature-based image analysis
Lillholm, Martin, Nielsen, Mads & Griffin, L. D., 2003, In: International Journal of Computer Vision. 52, 2, p. 73-95 23 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Finding discriminative regions that optimally separate healthy and osteoarthritis knees
Jørgensen, D. R., Lillholm, Martin & Dam, E. B., 2011, In: Osteoarthritis and Cartilage. 19, Supplement 1, p. S192 414.Research output: Contribution to journal › Conference abstract in journal › Research › peer-review
- Published
Fully automatic cartilage morphometry for knee MRI from the OAI
Dam, E., Marques, J., Zaim, S., Fuerst, T., Genant, H., Lillholm, Martin & Nielsen, Mads, 2012. 1 p.Research output: Contribution to conference › Conference abstract for conference › Research › peer-review
Gaussian scale space from insufficient image information
Loog, M., Lillholm, Martin, Nielsen, M. & Viergever, M. A., 2003, Scale Space Methods in Computer Vision: 4th International Conference, Scale Space 2003 Isle of Skye, UK, June 10–12, 2003 Proceedings. Griffin, L. D. & Lillholm, M. (eds.). Springer, p. 757-769 (Lecture notes in computer science, Vol. 2695/2003).Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
- Published
Hippocampus MRI T1 texture's relation to established Alzheimer's disease biomarkers and prediction of progression
Nielsen, Mads, Sørensen, L., Pai, A. S. U., Igel, Christian & Lillholm, Martin, 2015. 1 p.Research output: Contribution to conference › Conference abstract for conference › Research › peer-review
Hypotheses for image features, icons and textons
Griffin, L. D. & Lillholm, Martin, 2006, In: International Journal of Computer Vision. 70, 3, p. 213-230 18 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Identifying recurrent breast cancer patients in national health registries using machine learning
Lauritzen, Andreas, Berg, T., Jensen, M., Lillholm, Martin & Knoop, A., 2023, In: Acta Oncologica. 62, 4, p. 350–357Research output: Contribution to journal › Journal article › Research › peer-review
Image features and the 1-D, 2nd order gaussian derivative jet
Griffin, L. D. & Lillholm, Martin, 2005, Scale Space and PDE Methods in Computer Vision: 5th International Conference, Scale-Space 2005, Hofgeismar, Germany, April 7-9, 2005. Proceedings. Kimmel, R., Sochen, N. A. & Weickert, J. (eds.). Springer, p. 26-37 12 p. (Lecture notes in computer science, Vol. 3459).Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
- Published
Impact of adding breast density to breast cancer risk models: A systematic review
Vilmun, B. M., Vejborg, I., Lynge, E., Lillholm, Martin, Nielsen, Mads, Nielsen, Michael Bachmann & Carlsen, Jonathan Frederik, Jun 2020, In: European Journal of Radiology. 127, 9 p., 109019.Research output: Contribution to journal › Review › Research › peer-review
- Published
Improved Alzheimer's disease diagnostic performance using structural MRI: validation of the MRI combination biomarker that won the CADDementia challenge
Sørensen, L., Lillholm, Martin, Pai, A. S. U., Balas, I., Anker, C., Igel, Christian & Nielsen, Mads, 2015, In: Insights into Imaging. 6, Supplement 1, 1 p., B-0077.Research output: Contribution to journal › Conference abstract in journal › Research
Jet based feature classification
Lillholm, Martin & Steenstrup Pedersen, Kim, 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004: ICPR 2004. IEEE, p. 787-790 4 p.Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
Larger feature alphabets can improve object recognition even with simpler visual words
Lillholm, Martin & Griffin, L., 2008, In: Perception. 37, Supplement, p. 33-33 1 p.Research output: Contribution to journal › Conference abstract in journal › Research
- Published
Learning density independent texture features
Kallenberg, M. G. J., Nielsen, Mads, Holland, K., Karssemeijer, N., Igel, Christian & Lillholm, Martin, 2016, Breast Imaging: 13th International Workshop, IWDM 2016, Malmö, Sweden, June 19-22, 2016, Proceedings. Tingberg, A., Lång, K. & Timberg, P. (eds.). Springer, p. 299-306 8 p. (Lecture notes in computer science, Vol. 9699).Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
- Published
Linear feature selection in texture analysis - A PLS based method
Marques, J., Igel, Christian, Lillholm, Martin & Dam, E., 2013, In: Machine Vision & Applications. 24, 7, p. 1435-1444 10 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Localized cerebral atrophy acceleration during Alzheimer’s disease
Pai, A. S. U., Sørensen, L., Darkner, Sune, Lillholm, Martin, Dam, E. B., Sporring, Jon & Nielsen, Mads, 2013, In: Alzheimer's & Dementia. 9, 4, Supplement, p. P151 1 p., O1-10-06.Research output: Contribution to journal › Conference abstract in journal › Research › peer-review
- Published
Localized cerebral atrophy acceleration during Alzheimer’s disease
Pai, A. S. U., Sørensen, L., Darkner, Sune, Lillholm, Martin, Dam, E. B., Sporring, Jon & Nielsen, Mads, 2013, In: Alzheimer's & Dementia. 9, 4, Supplement, p. P36–P37 2 p., IC-P-059.Research output: Contribution to journal › Conference abstract in journal › Research › peer-review
- Published
Mammographic density and structural features can individually and jointly contribute to breast cancer risk assessment in mammography screening: a case-control study
Winkel, R. R., von Euler-Chelpin, My Catarina, Nielsen, Mads, Petersen, P. K., Lillholm, Martin, Nielsen, Michael Bachmann, Lynge, Elsebeth, Uldall, W. Y. & Vejborg, I. M. M., 2016, In: B M C Cancer. 16, 12 p., 414.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Mammographic texture resemblance generalizes as an independent risk factor for breast cancer
Nielsen, Mads, Vachon, C. M., Scott, C. G., Chernoff, K., Karemore, Gopal, Karssemeijer, N., Lillholm, Martin & Karsdal, M., 2014, In: Breast Cancer Research (Online Edition). 16, 2, 8 p., R37.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Maximum a posteriori estimation of linear shape variation with application to vertebra and cartilage modeling
Crimi, A., Lillholm, Martin, Nielsen, Mads, Ghosh, A., de Bruijne, Marleen, Dam, E. B. & Sporring, Jon, 2011, In: IEEE Transactions on Medical Imaging. 30, 8, p. 1514-1526 13 p.Research output: Contribution to journal › Journal article › Research › peer-review
Maximum likelihood metameres for local 2nd order image structure of natural images
Lillholm, Martin & Griffin, L. D., 2007, Scale Space and Variational Methods in Computer Vision: First International Conference, SSVM 2007, Ischia, Italy, May 30 - June 2, 2007. Proceedings. Sgallari, F., Murli, A. & Paragios, N. (eds.). Springer, p. 394-405 12 p. (Lecture notes in computer science, Vol. 4485).Research output: Chapter in Book/Report/Conference proceeding › Book chapter › Research › peer-review
Method for analyzing magnetic resonance imaging (MRI) image of bone to identify e.g. osteoarthritis, involves combining features of textural information within region of interest (ROI) to estimate level of disease
Dam, E. B., Granlund, R. L. & Lillholm, Martin, 2011, IPC No. G06T-007/00, Patent No. WO2011151242-A1, 8 Dec 2011, Priority date 1 Jun 2010, Priority No. GB009101Research output: Patent
- Published
Method for identifying region of interest (ROI) in human organ for performing e.g. knee cartilage quantification, involves calculating weight of feature of image in map for minimizing sample size needed to discriminate between groups
Dam, E. B., Nielsen, Mads, Qazi, A. A., Lillholm, Martin & Jørgensen, D. R., 2010, IPC No. G06K-009/00, Patent No. US2010232671-A1, 16 Sep 2010, Priority date 17 Dec 2008, Priority No. US203094PResearch output: Patent
Mode estimation using pessimistic scale space tracking
Griffin, L. D. & Lillholm, Martin, 2003, Scale Space Methods in Computer Vision: 4th International Conference, Scale Space 2003 Isle of Skye, UK, June 10–12, 2003 Proceedings. Griffin, L. D. & Lillholm, M. (eds.). Springer, p. 266-280 15 p. (Lecture notes in computer science, Vol. 2695).Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
Natural image profiles are most likely to be step edges
Griffin, L. D., Lillholm, Martin & Nielsen, Mads, 2004, In: Vision Research. 44, 4, p. 407-421 15 p.Research output: Contribution to journal › Journal article › Research › peer-review
Novel image feature alphabets for object recognition
Lillholm, Martin & Griffin, L., 2008, 19th International Conference on Pattern Recognition, 2008: ICPR 2008.. IEEE, 4 p.Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
On image reconstruction from multiscale top points
Kanters, F., Lillholm, Martin, Duits, R., Janssen, B., Platel, B., Florack, L. & ter Haar Romeny, B., 2005, Scale Space and PDE Methods in Computer Vision: 5th International Conference, Scale-Space 2005, Hofgeismar, Germany, April 7-9, 2005. Proceedings. Kimmel, R., Sochen, N. A. & Weickert, J. (eds.). Springer, p. 431-442 12 p. (Lecture notes in computer science, Vol. 3459).Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
On spatial metamerism in computational vision
Lillholm, Martin, 2004, IT-Universitetet i København. 113 p.Research output: Book/Report › Ph.D. thesis › Research
- Published
On subregional analysis of cartilage loss from knee MRI
Jørgensen, D. R., Lillholm, Martin, Genant, H. K. & Dam, Erik Bjørnager, 2013, In: Cartilage. 4, 2, p. 121-130 10 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Predicting knee cartilage loss using adaptive partitioning of cartilage thickness maps
Jørgensen, D. R., Dam, Erik Bjørnager & Lillholm, Martin, 2013, In: Computers in Biology and Medicine. 43, 8, p. 1045-1052 8 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Prior knowledge regularization in statistical medical image tasks
Crimi, A., Sporring, Jon, de Bruijne, Marleen, Lillholm, Martin & Nielsen, Mads, 2009, Proceedings of the MICCAI Workshop on Probabilistic Models for Medical Image Analysis. 12 p.Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
- Published
Quaternions, interpolation and animation
Dam, E., Koch, M. & Lillholm, Martin, 1998, Datalogisk Institut, Københavns Universitet, 103 p. (DIKU teknisk rapport; No. 5, Vol. 98).Research output: Working paper
- Published
Risk stratification of women with false-positive test results in mammography screening based on mammographic morphology and density: a case control study
Winkel, R. R., von Euler-Chelpin, My Catarina, Lynge, Elsebeth, Diao, P., Lillholm, Martin, Kallenberg, M., Forman, Julie Lyng, Nielsen, Michael Bachmann, Uldall, W. Y., Nielsen, Mads & Vejborg, I. M. M., Aug 2017, In: Cancer Epidemiology. 49, p. 53-60 8 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Robust Cross-vendor Mammographic Texture Models Using Augmentation-based Domain Adaptation for Long-term Breast Cancer Risk
Lauritzen, Andreas, von Euler-Chelpin, My Catarina, Lynge, Elsebeth, Vejborg, I. M. M., Nielsen, Mads, Karssemeijer, N. & Lillholm, Martin, 2022, arXiv.org, 30 p.Research output: Working paper › Preprint
Scale Space Methods in Computer Vision: 4th International Conference, Scale-Space 2003, Isle of Skye, UK, June 10-12, 2003, Proceedings
Griffin, L. D. (ed.) & Lillholm, Martin (ed.), 2003, Springer. (Lecture notes in computer science, Vol. 2695).Research output: Book/Report › Book › Research › peer-review
- Published
Screening mammography: benefit of double reading by breast density
von Euler-Chelpin, My Catarina, Lillholm, Martin, Napolitano, George, Vejborg, I., Nielsen, Mads & Lynge, Elsebeth, 2018, In: Breast Cancer Research and Treatment. 171, 3, p. 767-776 10 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Sensitivity of screening mammography by density and texture: a cohort study from a population-based screening program in Denmark
von Euler-Chelpin, My Catarina, Lillholm, Martin, Vejborg, I., Nielsen, Mads & Lynge, Elsebeth, 2019, In: Breast Cancer Research. 21, 1Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Shape-based assessment of vertebral fracture risk in postmenopausal women using discriminative shape alignment
Crimi, A., Loog, M., de Bruijne, Marleen, Nielsen, Mads & Lillholm, Martin, 2012, In: Academic Radiology. 19, 4, p. 446-454 9 p.Research output: Contribution to journal › Journal article › Research › peer-review
Single gaze gestures
Møllenbach, E., Lillholm, Martin, Gail, A. & Hansen, J. P., 2010, Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications. Association for Computing Machinery, p. 177-180 4 p.Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
Single stroke gaze gestures
Mollenbach, E., Hansen, J. P., Lillholm, Martin & Gale, A., 2009, CHI '09 Extended Abstracts on Human Factors in Computing Systems. Association for Computing Machinery, p. 4555-4560 6 p.Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
Statistics and category systems for the shape index descriptor of local 2nd order natural image structure
Lillholm, Martin & Griffin, L. D., 2009, In: Image and Vision Computing. 27, 6, p. 771-781 11 p.Research output: Contribution to journal › Journal article › Research › peer-review
Symmetry sensitivities of derivative-of-gaussian filters
Griffin, L. D. & Lillholm, Martin, 2010, In: I E E E Transactions on Pattern Analysis and Machine Intelligence. 32, 6, p. 1072-1083 12 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
The combined effect of mammographic texture and density on breast cancer risk: a cohort study
Wanders, J. O. P., van Gils, C. H., Karssemeijer, N., Holland, K., Kallenberg, M., Peeters, P. H. M., Nielsen, Mads & Lillholm, Martin, 2018, In: Breast Cancer Research. 20, 10 p., 36.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Two dimensional shape representation manipulation method for improving general procrustes alignment process, involves relating probable relative depth of landmark in three dimensional shape of body part
Chernoff, K., Nielsen, Mads & Lillholm, Martin, 2010, IPC No. G06T-007/00, Patent No. WO2010142595-A1, 16 Dec 2010, Priority date 11 Jun 2009, Priority No. US268370Research output: Patent
- Published
Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
Kallenberg, M. G. J., Petersen, P. K., Nielsen, Mads, Ng, A. Y., Diao, P., Igel, Christian, Vachon, C. M., Holland, K., Winkel, R. R., Karssemeijer, N. & Lillholm, Martin, 2016, In: IEEE Transactions on Medical Imaging. 35, 5, p. 1322-1331 10 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Vertebral fracture risk (VFR) score for fracture prediction in postmenopausal Women
Lillholm, Martin, Ghosh, A., Pettersen, P. C., de Bruijne, Marleen, Dam, E. B., Karsdal, M. A., Christiansen, C., Genant, H. K. & Nielsen, Mads, 2011, In: Osteoporosis International. 22, 7, p. 2119-2128 10 p.Research output: Contribution to journal › Journal article › Research › peer-review
What do features tell about images?
Nielsen, Mads & Lillholm, Martin, 2001, Scale-Space and Morphology in Computer Vision: Third International Conference, Scale-Space 2001 Vancouver, Canada, July 7–8, 2001 Proceedings. Kerckhove, M. (ed.). Springer, p. 39-50 12 p. (Lecture notes in computer science, Vol. 2106).Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
ID: 152298477
Most downloads
-
1595
downloads
Mammographic texture resemblance generalizes as an independent risk factor for breast cancer
Research output: Contribution to journal › Journal article › Research › peer-review
Published -
594
downloads
Mammographic density and structural features can individually and jointly contribute to breast cancer risk assessment in mammography screening: a case-control study
Research output: Contribution to journal › Journal article › Research › peer-review
Published -
319
downloads
Automatic segmentation of high-and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative
Research output: Contribution to journal › Journal article › Research › peer-review
Published