The influence of norepinephrine and phenylephrine on cerebral perfusion and oxygenation during propofol-remifentanil and propofol-remifentanil-dexmedetomidine anaesthesia in piglets

Research output: Contribution to journalJournal articleResearchpeer-review

Mai Louise Grandsgaard Mikkelsen, Rikard Ambrus, Rune Rasmussen, James Edward Miles, Helle Harding Poulsen, Finn Borgbjerg Moltke, Thomas Eriksen

Background
Vasopressors are frequently used to increase blood pressure in order to ensure sufficient cerebral perfusion and oxygenation (CPO) during hypotensive periods in anaesthetized patients. Efficacy depends both on the vasopressor and anaesthetic protocol used. Propofol–remifentanil total intravenous anaesthesia (TIVA) is common in human anaesthesia, and dexmedetomidine is increasingly used as adjuvant to facilitate better haemodynamic stability and analgesia. Little is known of its interaction with vasopressors and subsequent effects on CPO. This study investigates the CPO response to infusions of norepinephrine and phenylephrine in piglets during propofol–remifentanil and propofol–remifentanil–dexmedetomidine anaesthesia. Sixteen healthy female piglets (25–34 kg) were randomly allocated into a two-arm parallel group design with either normal blood pressure (NBP) or induced low blood pressure (LBP). Anaesthesia was induced with propofol without premedication and maintained with propofol–remifentanil TIVA, and finally supplemented with continuous infusion of dexmedetomidine. Norepinephrine and phenylephrine were infused in consecutive intervention periods before and after addition of dexmedetomidine. Cerebral perfusion measured by laser speckle contrast imaging was related to cerebral oxygenation as measured by an intracerebral Licox probe (partial pressure of oxygen) and transcranial near infrared spectroscopy technology (NIRS) (cerebral oxygen saturation).

Results
During propofol–remifentanil anaesthesia, increases in blood pressure by norepinephrine and phenylephrine did not change cerebral perfusion significantly, but cerebral partial pressure of oxygen (Licox) increased following vasopressors in both groups and increases following norepinephrine were significant (NBP: P = 0.04, LBP: P = 0.02). In contrast, cerebral oxygen saturation (NIRS) fell significantly in NBP following phenylephrine (P = 0.003), and following both norepinephrine (P = 0.02) and phenylephrine (P = 0.002) in LBP. Blood pressure increase by both norepinephrine and phenylephrine during propofol–remifentanil–dexmedetomidine anaesthesia was not followed by significant changes in cerebral perfusion. Licox measures increased significantly following both vasopressors in both groups, whereas the decreases in NIRS measures were only significant in the NBP group.

Conclusions
Cerebral partial pressure of oxygen measured by Licox increased significantly in concert with the vasopressor induced increases in blood pressure in healthy piglets with both normal and low blood pressure. Cerebral oxygenation assessed by intracerebral Licox and transcranial NIRS showed opposing results to vasopressor infusions.
Original languageEnglish
Article number8
JournalActa Veterinaria Scandinavica
Volume60
Number of pages10
ISSN0044-605X
DOIs
Publication statusPublished - Feb 2018

    Research areas

  • Cerebral oxygenation, Cerebral perfusion, Dexmedetomidine, Laser speckle contrast imaging, Licox, NIRS, Norepinephrine, Phenylephrine, Propofol, Remifentanil, Vasopressor

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 191196919