Amitriptyline accumulation in tissues after coated activated charcoal hemoperfusion—a randomized controlled animal poisoning model

Research output: Contribution to journalJournal articleResearchpeer-review

Tejs Jansen, Lotte C G Hoegberg, Thomas Eriksen, Kim P Dalhoff, Bo Belhage, Sys S Johansen

Amitriptyline poisoning (AT) is a common poisoning, and AT possess the ability to promote life-threatening complications by its main action on the central nervous and cardiovascular systems. The pharmacokinetic properties might be altered at toxic levels compared to therapeutic levels. The effect of coated activated charcoal hemoperfusion (CAC-HP) on the accumulation of AT and its active metabolite nortriptyline (NT) in various tissues was studied in a non-blinded randomized controlled animal trial including 14 female Danish Land Race piglets. All piglets were poisoned with amitriptyline 7.5 mg/kg infused in 20 min, followed by orally instilled activated charcoal at 30 min after infusion cessation. The intervention group received 4 h of CAC-HP followed by a 1-h redistribution phase. At study cessation, the piglets were euthanized, and within 20 min, vitreous fluid, liver tissue, ventricle and septum of the heart, diaphragm and lipoic and brain tissues were collected. AT and NT tissue concentrations were quantified by UHPLC-MS/MS. A 4-h treatment with CAC-HP did not affect the tissue accumulation of AT in the selected organs when tested by Mann-Whitney U test (p values between 0.44 and 0.73). For NT concentrations, p values were between 0.13 and 1.00. Although not significant, an interesting finding was that data showed a tendency of increased tissue accumulation of AT and NT in the CAC-HP group compared with the control group. Coated activated charcoal hemoperfusion does not significantly alter the tissue concentration of AT and NT in the AT-poisoned piglet.

Original languageEnglish
JournalNaunyn-Schmiedeberg's Archives of Pharmacology
Volume392
Issue number10
Pages (from-to)1285–1292
ISSN0028-1298
DOIs
Publication statusPublished - Oct 2019

ID: 224185569