Tissue-specific effects of acetylcholine in the canine heart

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

Kirstine Callø, Robert Goodrow, Søren-Peter Olesen, Charles Antzelevitch, Jonathan M. Cordeiro

INTRODUCTION: Acetylcholine (ACh) release from the vagus nerve slows heart rate and atrioventricular conduction. ACh stimulates a variety of receptors and channels, including an inward rectifying current (IK,ACh). The effect of ACh in ventricle is still debated. We compare the effect of ACh on action potentials in canine atria, Purkinje and ventricular tissue as well as on ionic currents in isolated cells. METHODS: Action potentials were recorded from ventricular slices, Purkinje fibers, and arterially perfused atrial preparations. Whole-cell currents were recorded under voltage-clamp conditions and unloaded cell shortening was determined on isolated cells. The effect of ACh (1-10 µM) as well as ACh plus tertiapin, an IK,ACh specific toxin was tested. RESULTS: In atrial tissue, ACh hyperpolarized the membrane potential and shortened action potential duration (APD). In Purkinje and ventricular tissues, no significant effect of ACh was observed. Addition of ACh to atrial cells activated a large inward rectifying current (from -3.5±0.7 to -23.7±4.7 pA/pF) that was abolished by tertiapin. This current was not observed in other cell types. A small inhibition of ICa was observed in atria, Endo and Epi after ACh. ICa inhibition increased at faster pacing rates. At a BCL of 400 ms, ACh (1 µM) reduced ICa to 68% of control. CONCLUSION: IK,ACh is highly expressed in atria and is negligible/absent in Purkinje, Endo and Epi. In all cardiac tissues ACh caused rate-dependent inhibition of ICa.
Original languageEnglish
JournalA J P: Heart and Circulatory Physiology (Online)
Volume305
Pages (from-to)H66-H75
Number of pages10
ISSN1522-1539
DOIs
Publication statusPublished - 2013

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 45650424